Advertisement

The Combined Influence of Zinc and Epibrassinolide Increase Tolerance to Salt Stress in Brassica napus L.

  • Sh. Mokari-FiruzsalariEmail author
  • S. Khomari
  • R. Seyed-Sharifi
  • E. Goli-Kalanpa
  • K. Azizpour
RESEARCH PAPERS
  • 7 Downloads

Abstract

The separate foliar application of zinc (Zn) and epibrassinolide (EBL) have widely proved tolerance to several abiotic stresses, but their combined effect exposed to oxidative stress is an untouched area of investigation. In order to evaluate the physiological mechanism of salt stress tolerance, a pot experiment was conducted. The results revealed that chlorophyll content, efficiency of photosystem ΙΙ, total leaf area, total biomass, membrane stability index and relative water content decreased under 100 mM NaCl concentration whereas, the foliar application of Zn and EBL alone and in combination increased these parameters. In addition, an increase in accumulation of osmoprotectants and antioxidant enzymes activity was noted under stressed conditions, which was more pronounced in rapeseed plants (Brassica napus L.) treated with combined application of Zn and EBL. Salt stress increased H2O2 and MDA content, while the exogenous application of Zn and EBL decreased these oxidative stress markers. It is concluded that Zinc and EBL reduced toxic effect of salinity, while its combined application showed an additive effect and significantly enhanced salt tolerance.

Keywords:

Brassica napus epibrassinolide oxidative stress salt tolerance zinc 

REFERENCES

  1. 1.
    Munns, R. and Tester, M., Mechanisms of salinity tolerance, Annu. Rev. Plant Biol., 2008, vol. 59, pp. 651–681.CrossRefGoogle Scholar
  2. 2.
    Hayat, Sh., Hasaa, S.A., Yusuf, M., Hayat, Q., and Ahmad, A., Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata, Environ. Exp. Bot., 2010, vol. 69, pp. 105–112.CrossRefGoogle Scholar
  3. 3.
    Mittler, R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, vol. 7, pp. 405–410.CrossRefGoogle Scholar
  4. 4.
    Fariduddin, Q., Khalil, R.R.A.E., Mir, B.A., Yusuf, M., and Ahmad, A., 24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress, En-viron. Monit. Assess., 2013, vol. 185, pp. 7845–7856.CrossRefGoogle Scholar
  5. 5.
    Cakmak, I., Possible roles of zinc in protecting plant cells from damage by reactive oxygen species, New Ph-ytol., 2000, vol. 146, pp. 185–205.CrossRefGoogle Scholar
  6. 6.
    Waraich, E.A., Amad, R., Ashraf, M.Y., Saifullah, R.A., and Ahmad, M., Improving agricultural water use efficiency by nutrient management in crop plants, Acta Agric. Scand., B: Soil Plant Sci., 2011, vol. 61, pp. 291–304.Google Scholar
  7. 7.
    Xu, L.H., Wang, W.Y., Guo, J.J., Qin, J., Shi, D.Q., Li, Y.L., and Xu, J., Zinc improves salt tolerance by increasing reactive oxygen species scavenging and reducing Na+ accumulation in wheat seedlings, Biol. Plant., 2014, vol. 58, pp. 751–757.CrossRefGoogle Scholar
  8. 8.
    Jifon, J., Growth environment and leaf anatomy affect nondestructive estimates of chlorophyll and nitrogen in Citrus sp. leaves, J. Am. Soc. Hort. Sci., 2005, vol. 130, pp. 152–158.Google Scholar
  9. 9.
    Maxwell, K. and Johnson, G.N., Chlorophyll fluorescence—a practical guide, J. Exp. Bot., 2000, vol. 51, pp. 659–668.CrossRefGoogle Scholar
  10. 10.
    Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water-stress studies, Plant Soil, 1973, vol. 39, pp. 205–207.CrossRefGoogle Scholar
  11. 11.
    Grieve, C.M. and Grattan, S.R., Rapid assay for determination of water soluble quaternary ammonium compounds, Plant Soil, 1983, vol. 70, pp. 303–307.CrossRefGoogle Scholar
  12. 12.
    Aebi, H., Catalase in vitro, Methods Enzymol., 1984, vol. 105, pp. 121–126.CrossRefGoogle Scholar
  13. 13.
    Mac-Adam, J.W., Nelson, C.J., and Sharp, R.E., Peroxidase activity in the leaf elongation zone of tall fescue. I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone, Plant Physiol., 1992, vol. 99, pp. 872–878.CrossRefGoogle Scholar
  14. 14.
    Becana, M., Aparicio-Tejo, P., Irigoyan, J.J., and Sanchez-Diaz, M., Some enzymes of hydrogen peroxide metabolism in leaves and root nodules of Medicago sativa, Plant Physiol., 1986, vol. 82, pp. 1169–1171.CrossRefGoogle Scholar
  15. 15.
    Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, pp. 189–198.CrossRefGoogle Scholar
  16. 16.
    Zaho, S.J., Xu, C.C., Zou, Q., and Meng, Q.W., Improvements of the method for measurement of malondialdehyde in plant tissue, Plant Physiol. Commun., 1994, vol. 30, pp. 207–210.Google Scholar
  17. 17.
    Lutts, S., Kinet, J.M., and Bouharmont, J., NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance, Ann. Bot., 1996, vol. 78, pp. 389–398.CrossRefGoogle Scholar
  18. 18.
    Rossi, L., Zhang, W., Lombardini, L., and Ma, X., The impact of cerium oxide nano particles on the salt stress responses of Brassica napus L., Environ. Pollut., 2016, vol. 219, pp. 28–36.CrossRefGoogle Scholar
  19. 19.
    Ahmad, P., Ahanger, M.A., Alyemeni, M.N., Wijaya, L., Egamberdieva, D., Bhardwaj, R., and Ashraf, M., Zinc application mitigates the adverse effects of NaCl stress on mustard [Brassica juncea (L.) Czern & Coss] through modulating compatible organic solutes, antioxidant enzymes, and flavonoid content, J. Plant Interact., 2017, vol. 12, pp. 429–437.CrossRefGoogle Scholar
  20. 20.
    Kaur, S.K., Handa, N., Bali, S., Arora, S., Sharma, A., Kaur, R., and Bhardwaj, R., Modulation of antioxidative defense expression and osmolyte content by co-application of 24-epibrassinolide and salicylic acid in Pb exposed Indian mustard plants, Ecotoxicol. Environ. Saf., 2018, vol. 147, pp. 382–393.CrossRefGoogle Scholar
  21. 21.
    Acosta-Motos, J.R., Ortuño, M.F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M.J., and Hernandez, J.A., Plant responses to salt stress: adaptive mechanisms, Agronomy, 2017, vol. 7, pp. 1–38.CrossRefGoogle Scholar
  22. 22.
    Ashraf, M. and Harris, P.J.C., Photosynthesis under stressful environments: an overview, Photosynthetica, 2013, vol. 51, pp. 163–190.CrossRefGoogle Scholar
  23. 23.
    Kapotis, G., Zervoudakis, G., Veltsistas, T., and Salahas, G., Comparison of chlorophyll meter readings with leaf chlorophyll concentration in Amaranthus v-litus: correlation with physiological processes, Russ. J. Plant Physiol., 2003, vol. 50, pp. 395–397.CrossRefGoogle Scholar
  24. 24.
    Weisany, W., Sohrabi, Y., Heidari, G., Siosemardeh, A., and Ghassemi-Golezani, K., Physiological responses of soybean (Glycine max L.) to zinc application under salinity stress, Aust. J. Crop Sci., 2011, vol. 5, pp. 1441–1447.Google Scholar
  25. 25.
    Jan, A.U., Hadi, F., Midrarullah Nawaz, M.A., and Rahman, K., Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.), Plant Physiol. Biochem., 2017, vol. 116, pp. 139–149.CrossRefGoogle Scholar
  26. 26.
    Gao, S., Ouyang, C., Wang, S., Xu, Y., Tang, L., and Chen, F., Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings, Plant Soil Environ., 2008, vol. 54, pp. 374–381.CrossRefGoogle Scholar
  27. 27.
    Gill, S.S. and Tuteja, N., Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 2010, vol. 48, pp. 909–930.CrossRefGoogle Scholar
  28. 28.
    Ahammed, G.J., Ruan, Y.P., Zhou, J., Xia, X.J., Shi, K., Zhou, Y.H., and Yu, J.Q., Brassinosteroid alleviates polychlorinated biphenyls-induced oxidative stress by enhancing antioxidant enzymes activity in tomato, Chemosphere, 2013, vol. 90, pp. 2645–2653.CrossRefGoogle Scholar
  29. 29.
    Sharma, A., Kumar, V., Kanwar, M.K., Thukral, A.K., and Bhardwaj, R., Ameliorating imidacloprid induced oxidative stress by 24-epibrassinolide in Brassica juncea L., Russ. J. Plant Physiol., 2017, vol. 64, pp. 509–517.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Sh. Mokari-Firuzsalari
    • 1
    Email author
  • S. Khomari
    • 1
  • R. Seyed-Sharifi
    • 1
  • E. Goli-Kalanpa
    • 2
  • K. Azizpour
    • 3
  1. 1.Department of Agronomy and Plant Breeding, Faculty of Agricultural and Natural Resources, University of Mohaghegh ArdabiliArdabilIran
  2. 2.Department of Soil science and engineering, University of Mohaghegh ArdabiliArdabilIran
  3. 3.Department of Agronomy and medicinal plant, Azarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations