Advertisement

TERF1 Regulates Nuclear Gene Expression Through Chloroplast Retrograde Signals

  • W. Wu
  • L. L. Liu
  • Y. C. YanEmail author
RESEARCH PAPERS
  • 24 Downloads

Abstract

Ethylene is an important phytohormone that regulates many important biological processes in plant. ERF (ethylene response factor) proteins are key transcription factors that activate the ethylene signaling pathway. However, our knowledge about the mechanism of the ERF transcription factors in regulating nuclear genes expression is limited. Retrograde signaling pathway in chloroplast is a novel kind of mechanism that regulates nuclear gene expression by different signals in plastid. Based on our former research we analyzed the components related with retrograde signaling from plastid in the transgenic tobacco overexpressing TERF1, a member of ERF family transcription factors, to elucidate the interaction between ethylene signaling pathway and different retrograde signaling pathway in plastid under normal growth condition. Results show that TERF1 regulates different retrograde signals in plastid and thus regulates different nuclear genes expression under normal growth condition. We propose a new mechanism that links ethylene signaling pathway and retrograde signaling pathway as well as new potential of TERF1 in regulating nuclear genes expression at post-transcriptional level.

Keywords:

Nicotiana tabacum ERF proteins ethylene chloroplast retrograde signaling gene expression 

Notes

ACKNOWLEDGMENTS AUTHOR CONTRIBUTIONS COMPLIANCE WITH ETHICAL STANDARDS

This research was supported financially by grants from the Chinese Academy of Agricultural Sciences, project no. 1610042014006.

W. Wu and Y.C. Yan. designed research; W. Wu and L.L. Liu performed research and data analysis; W. Wu wrote the paper.

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Supplementary material

11183_2018_8002_MOESM1_ESM.pdf (34 kb)
11183_2018_8002_MOESM1_ESM.pdf

REFERENCES

  1. 1.
    Neuhaus, H.E. and Emes, M.J., Nonphotosynthetic metabolism in plastids, Annu. Rev. Plant Physiol. Plant Mol. Biol., 2000, vol. 51, pp. 111–140.CrossRefGoogle Scholar
  2. 2.
    Chan, K.X., Phua, S.Y., Crisp, P., McQuinn, R., and Pogson, B.J., Learning the languages of the chloroplast: retrograde signaling and beyond, Annu. Rev. Plant Biol., 2016, vol. 67, pp. 25–53.CrossRefGoogle Scholar
  3. 3.
    Shoji, T., Mishima, M., and Hashimoto, T., Divergent DNA-binding specificities of a group of ETHYLENE RESPONSE FACTOR transcription factors involved in plant defense, Plant Physiol., 2013, vol. 162, pp. 977–990.CrossRefGoogle Scholar
  4. 4.
    Huang, Z.J., Zhang, Z., Zhang, X., Zhang, H., Huang, D., and Huang, R., Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes, FEBS Lett., 2004, vol. 573, pp. 110–116.CrossRefGoogle Scholar
  5. 5.
    Fernandez-Pozo, N., Menda, N., Edwards, J.D., Saha, S., Tecle, I.Y., Strickler, S.R., Bombarely, A., Fisher-York, T., Pujar, A., Foerster, H., Yan, A., and Mueller, L.A., The Sol Genomics Network (SGN)—from genotype to phenotype to breeding, Nucleic Acids Res., 2015, vol. 43: D1036–1041.CrossRefGoogle Scholar
  6. 6.
    Koussevitzky, S., Nott, A., Mockler, T.C., Hong, F., Sachetto-Martins, G., Surpin, M., Lim, J., Mittler, R., and Chory, J., Signals from chloroplasts converge to regulate nuclear gene expression, Science, 2007, vol. 316, pp. 715–719.CrossRefGoogle Scholar
  7. 7.
    Woodson, J.D., Perez-Ruiz, J.M., Schmitz, R.J., Ecker, J.R., and Chory, J., Sigma factor-mediated plastid retrograde signals control nuclear gene expression, Plant J., 2013, vol. 73, pp. 1–13.CrossRefGoogle Scholar
  8. 8.
    Leister, D., Romani, I., Mittermayr, L., Paieri, F., Fenino, E., and Kleine, T., Identification of target genes and transcription factors implicated in translation-dependent retrograde signaling in Arabidopsis, Mol. Plant, 2014, vol. 7, pp. 1228–1247.CrossRefGoogle Scholar
  9. 9.
    Waters, M.T., Wang, P., Korkaric, M., Capper, R.G., Saunders, N.J., and Langdale, J.A., GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis, Plant Cell, 2009, vol. 21, pp. 1109–1128.CrossRefGoogle Scholar
  10. 10.
    Hu, Z., Xu, F., Guan, L., Qian, P., Liu, Y., Zhang, H., Huang, Y., and Hou, S., The tetratricopeptide repeat-containing protein slow green1 is required for chloroplast development in Arabidopsis, J. Exp. Bot., 2014, vol. 65, pp. 1111–1123.CrossRefGoogle Scholar
  11. 11.
    Op, D.C.R., Przybyla, D., Ochsenbein, C., Laloi, C., Kim, C., Danon, A., Wagner, D., Hideg, E., Gobel,  C., Feussner, I., Nater, M., and Apel, K., Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis, Plant Cell, 2003, vol. 15, pp. 2320–2332.CrossRefGoogle Scholar
  12. 12.
    Danon, A., Coll, N.S., and Apel, K., Cryptochrome-1-dependent execution of programmed cell death induced by singlet oxygen in Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 17036–17041.CrossRefGoogle Scholar
  13. 13.
    Lee, K.P., Kim, C., Landgraf, F., and Apel, K., EX-ECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 10270–10275.CrossRefGoogle Scholar
  14. 14.
    Shao, N., Duan, G.Y., and Bock, R., A mediator of singlet oxygen responses in Chlamydomonas reinhardtii and Arabidopsis identified by a luciferase-based genetic screen in algal cells, Plant Cell, 2013, vol. 25, pp. 4209–4226.CrossRefGoogle Scholar
  15. 15.
    Fey, V., Gollan, P.J., Suorsa, M., Kangasjärvi, S., and Aro, E.M., Retrograde plastid redox signals in the expression of nuclear genes for chloroplast proteins of Arabidopsis thaliana, J. Biol. Chem., 2005, vol. 280, pp. 5318–5328.CrossRefGoogle Scholar
  16. 16.
    Tikkanen, M., Gollan, P.J., Suorsa, M., Kangasjärvi, S., and Aro, E.M., STN7 operates in retrograde signaling through controlling redox balance in the electron transfer chain, Front. Plant Sci., 2012, vol. 3: 277.CrossRefGoogle Scholar
  17. 17.
    Hiltscher, H., Rudnik, R., Shaikhali, J., Heiber, I., Mellenthin, M., Meirelles Duarte, I., Schuster, G., Kahmann, U., and Baier, M., The radical induced cell death protein 1 (RCD1) supports transcriptional activation of genes for chloroplast antioxidant enzymes, Front. Plant Sci., 2014, vol. 5: 475.CrossRefGoogle Scholar
  18. 18.
    Blanco, N.E., Guinea-Díaz, M., Whelan, J., and Strand, A., Interaction between plastid and mitochondrial retrograde signalling pathways during changes to plastid redox status, Philos. Trans. R. Soc. London, B: Biol. Sci., 2014, vol. 369: 20130231.CrossRefGoogle Scholar
  19. 19.
    Estavillo, G.M., Crisp, P.A., Pornsiriwong, W., Wirtz, M., Collinge, D., Carrie, C., Giraud, E., Whelan, J., David, P., Javot, H., Brearley, C., Hell, R., Marin, E., and Pogson, B.J., Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis, Plant Cell, 2011, vol. 23, pp. 3992–4012.CrossRefGoogle Scholar
  20. 20.
    Xiao, Y., Savchenko, T., Baidoo, E.E., Chehab, W.E., Hayden, D.M., Tolstikov, V., Corwin, J.A., Kliebenstein, D.J., Keasling, J.D., and Dehesh, K., Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes, Cell, 2012, vol. 149, pp. 1525–1535.CrossRefGoogle Scholar
  21. 21.
    Vogel, M.O., Moore, M., König, K., Pecher, P., Alsharafa, K., Lee, J., and Dietz, K.J., Fast retrograde signaling in response to high light involves metabolite export, MITOGEN-ACTIVATED PROTEIN KINASE6, and AP2/ERF transcription factors in A-rabidopsis, Plant Cell, 2014, vol. 26, pp. 1151–1165.CrossRefGoogle Scholar
  22. 22.
    Thormahlen, I., Ruber, J., von Roepenack-Lahaye, E., Ehrlich, S.M., Massot, V., Hümmer, C., Tezycka, J., Issakidis-Bourguet, E., and Geigenberger, P., Inactivation of thioredoxin f1 leads to decreased light activation of ADP-glucose pyrophosphorylase and altered diurnal starch turnover in leaves of Arabidopsis plants, Plant Cell Environ., 2013, vol. 36, pp. 16–29.CrossRefGoogle Scholar
  23. 23.
    Avendano-Vazquez, A.O., Cordoba, E., Llamas, E., San, R.C., Nisar, N., de la Torre, S., Ramos-Vega, M., Gutierrez-Nava, M.D., Cazzonelli, C.I., Pogson, B.J., and Leon, P., An uncharacterized apocarotenoid-derived signal generated in zeta-carotene desaturase mutants regulates leaf development and the expression of chloroplast and nuclear genes in Arabidopsis, Plant Cell, 2014, vol. 26, pp. 2524–2537.CrossRefGoogle Scholar
  24. 24.
    Mou, Z., He, Y., Dai, Y., Liu, X., and Li, J., Deficiency in fatty acid synthase leads to premature cell death and dramatic alterations in plant morphology, Plant Cell, 2000, vol. 12, pp. 405–418.CrossRefGoogle Scholar
  25. 25.
    Mandal, M.K., Chandra-Shekara, A.C., Jeong, R.D., Yu, K., Zhu, S., Chanda, B., Navarre, D., Kachroo, A., and Kachroo, P., Oleic acid-dependent modulation of NITRIC OXIDE ASSOCIATED1 protein levels regulates nitric oxide-mediated defense signaling in Ar-abidopsis, Plant Cell, 2012, vol. 24, pp. 1654–1674.CrossRefGoogle Scholar
  26. 26.
    Froehlich, J.E., Itoh, A., and Howe, G.A., Tomato allene oxide synthase and fatty acid hydroperoxide lyase, two cytochrome P450s involved in oxylipin metabolism, are targeted to different membranes of chloroplast envelope, Plant Physiol., 2001, vol. 125, pp. 306–317.CrossRefGoogle Scholar
  27. 27.
    Mueller, S., Hilbert, B., Dueckershoff, K., Roitsch, T., Krischke, M., Mueller, M.J., and Berger, S., General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis, Plant Cell, 2008, vol. 20, pp. 768–785.CrossRefGoogle Scholar
  28. 28.
    Zhang, J., Vanneste, S., Brewer, P.B., Michniewicz, M., Grones, P., Kleine-Vehn, J., Lofke, C., Teichmann, T., Bielach, A., Cannoot, B., Hoyerova, K., Chen, X., Xue, H.W., Benkova, E., Zazimalova, E., et al., Inositol trisphosphate-induced Ca2+ signaling modulates auxin transport and PIN polarity, Dev. Cell, 2011, vol. 20, pp. 855–866.CrossRefGoogle Scholar
  29. 29.
    Rodriguez, V.M., Chételat, A., Majcherczyk, P., and Farmer, E.E., Chloroplastic phosphoadenosine phosphosulfate metabolism regulates basal levels of the prohormone jasmonic acid in Arabidopsis leaves, Plant Physiol., 2010, vol. 152, no. 3, pp. 1335–1345.CrossRefGoogle Scholar
  30. 30.
    Gil, M.J., Coego, A., Mauch-Mani, B., Jordá, L., and Vera, P., The Arabidopsis csb3 mutant reveals a regulatory link between salicylic acid-mediated disease resistance and the methyl-erythritol 4-phosphate pathway, Plant J., 2005, vol. 44, pp. 155–166.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Graduate School, Chinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations