Interactive Effect of Melatonin and Sodium Nitroprusside on Seed Germination and Seedling Growth of Catharanthus roseus under Cadmium Stress

  • M. Nabaei
  • R. AmooaghaieEmail author


In this study, impact of seed presoaking with melatonin and sodium nitroprusside (SNP) (as a NO donor) was evaluated on seed germination and seedling growth of Catharanthus roseus (L.) G. Don under both normal and Cd stress conditions. Results showed that 200 µM Cd reduced the relative seed germination, root elongation tolerance and seed germination tolerance index. The melatonin and SNP improved the seed germination, germination rate, seedling length, and vigor index under Cd stress in a dose-dependent manner and the maximum biological responses obtained by 100 μM melatonin and 200 μM SNP. However, 200–400 μM melatonin and 400 μM SNP negatively influenced the seed germination indices and seedling establishment. The cadmium suppressed the amylase activity and contents of soluble and reducing sugars in germinating seeds; thereby it reduced seed germination. Cd stress also decreased subsequent growth of seedlings and increased electrolyte leakage in them. These Cd-induced inhibitory effects were ameliorated by applying both melatonin and SNP. Importantly, melatonin as well as SNP was able to markedly boost the NO content in seeds. The addition of the specific scavenger of NO (cPTIO) reversed the protective effects conferred by melatonin, but inhibition of melatonin biosynthesis by p-CPA could not alleviate effects elicited by SNP completely, suggesting that NO plays role a downstream signal in melatonin-mediated germination responses especially under cadmium stress.


Catharanthus roseus cadmium melatonin nitric oxide seed germination 



The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.


  1. 1.
    Seneviratne, M., Rajakaruna, N., Rizwan, M., Madawala, H.M.S.P., Ok, Y.S., and Vithanage, M., Heavy metal-induced oxidative stress on seed germination and seedling development: a critical review, Environ. Geochem. Health, 2017. Scholar
  2. 2.
    Sfaxi-Bousbih, A., Chaoui, A., and El-Ferjani, E., Cadmium impairs mineral and carbohydrate mobilization during the germination of bean seeds, Ecotoxicol. Environ. Saf., 2010, vol. 73, pp. 1123–1129.CrossRefGoogle Scholar
  3. 3.
    Rahoui, S., Chaoui, A., and El-Ferjani, E., Membrane damage and solute leakage from germinating pea seed under cadmium stress, J. Hazard. Mater., 2010, vol. 178, nos. 1–3, pp. 1128–1131.Google Scholar
  4. 4.
    Hardeland, R., Melatonin in plants—diversity of levels and multiplicity of functions, Front. Plant Sci., 2016, vol. 7: 198.CrossRefGoogle Scholar
  5. 5.
    Kołodziejczyk, I. and Posmyk, M.M., Melatonin—a new plant biostimulator? J. Elementol., 2016, vol. 21, no. 4, pp. 1187–1198.Google Scholar
  6. 6.
    Posmyk, M.M., Kuran, H., Marciniak, K., and Janas, K.M., Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations, J. Pineal Res., 2008, vol. 5, pp. 24–31.CrossRefGoogle Scholar
  7. 7.
    Zhang, H.J., Zhang, N., Yang, R.C., Wang, L., Sun, Q.Q., Li, D.B., Cao, Y.Y., Weeda, S., Zhao, B., Ren, S., and Guo, Y.D., Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.), J. Pineal Res., 2014, vol. 57, pp. 269–279.CrossRefGoogle Scholar
  8. 8.
    Arnao, M.B. and Hernández-Ruiz, J., Chemical stress by different agents affects the melatonin content of barley roots, J. Pineal Res., 2009, vol. 46, pp. 295–299.CrossRefGoogle Scholar
  9. 9.
    Afreen, F., Zobayed, S., and Kozai, T., Melatonin in Glycyrrhiza uralensis: response of plant roots to spectral quality of light and UV-B radiation, J. Pineal Res., 2006, vol. 41, pp. 108–115.CrossRefGoogle Scholar
  10. 10.
    Hernández, I.G., Gomez, F.J.V., Cerutti, S., Arana, M.V., and Silva, M.F., Melatonin in Arabidopsis thaliana acts as plant growth regulator at low concentrations and preserves seed viability at high concentrations, Plant Physiol. Biochem., 2015, vol. 94, pp. 191–196.Google Scholar
  11. 11.
    Zhang, N., Zhang, H.J., Sun, Q.Q., Cao, Y.Y., Li, X., Zhao, B., Wu, P., and Guo, Y.D., Proteomic analysis reveals a role of melatonin in promoting cucumber seed germination under high salinity by regulating energy production, Sci. Rep., 2017, vol. 7: 503.CrossRefGoogle Scholar
  12. 12.
    Zhang, N., Zhao, B., Zhang, H.J., Weeda, S., Yang, C., Yang, Z.C., Ren, S., and Guo, Y.D., Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.), J. Pineal Res., 2013, vol. 54, pp. 15–23.CrossRefGoogle Scholar
  13. 13.
    Domingos, P., Prado, A.M., Wong, A., Gehring, C., and Feijo, J.A., Nitric oxide: a multitasked signaling gas in plants, Mol. Plant, 2015, vol. 8, pp. 506–520.CrossRefGoogle Scholar
  14. 14.
    Amooaghaie, R. and Nikzad, K., The role of nitric oxide in priming induced low temperature tolerance in two genotypes of tomato, Seed Sci. Res., 2013, vol. 23, pp. 123–131.CrossRefGoogle Scholar
  15. 15.
    Amooaghaie, R., Tabatabaei, F., and Ahadi, A.M., Role of hematin and sodium nitroprusside in regulating Brassica nigra seed germination under nanosilver and silver nitrate stresses, Ecotoxicol. Environ. Saf., 2015, vol. 113, pp. 25–270.CrossRefGoogle Scholar
  16. 16.
    Liu, N., Gong, B., Jin, Z., Wang, X., Wei, M., Yang, F., Li, Y., and Shi, Q., Sodic alkaline stress mitigation by exogenous melatonin in tomato needs nitric oxide as a downstream signal, J. Plant Physiol., 2015, vols. 186–187, pp. 68–77.Google Scholar
  17. 17.
    Pandey, S., Gupta, K., and Mukherjee, A.K., Impact of cadmium and lead on Catharanthus roseus—a phytoremediation study, J. Environ. Biol., 2007, vol. 28, no. 3, pp. 655–662.Google Scholar
  18. 18.
    Seed Vigour Testing Handbook, Springfield: Association of Official Seed Analysis (AOSA), 1983, contribution No. 32.Google Scholar
  19. 19.
    Somogyi, M., Notes on sugar determination, J. Biol. Chem., 1952, vol. 195, pp. 19–23.Google Scholar
  20. 20.
    Maurice, N., Ping, C.Y., Miaomiao, Q., Constantine, U., Bo, Y., and Qi, K.Y., Effects of exogenous nitric oxide on germination and carbohydrates mobilization in alfalfa seedling under cadmium stress, Int. J. Sci. Environ. Technol., 2016, vol. 5, no. 4, pp. 2337–2350.Google Scholar
  21. 21.
    Dionisio-Sese, M.L. and Tobita, S., Antioxidant responses of rice seedlings to salinity stress, Plant Sci., 1998, vol. 135, pp. 1–9.CrossRefGoogle Scholar
  22. 22.
    Kranner, I. and Colville, L., Metals and seeds: biochemical and molecular implications and their significance for seed germination, Environ. Exp. Bot., 2010, vol. 3, pp. 2–11.Google Scholar
  23. 23.
    Chen, Q., Qi, W.B., Reiter, R.J., Wie, W., and Wang, B.M., Exogenously applied melatonin stimulates root growth and raises endogenous indole acetic acid in roots of etiolated seedlings of Brassica juncea, J. Plant Physiol., 2009, vol. 166, pp. 324–328.CrossRefGoogle Scholar
  24. 24.
    Liu, H.Y., Yu, X., Cui, D.Y., Sun, M.H., Sun, W.N., and Tang, Z.C., The role of water channel proteins and nitric oxide signaling in rice seed germination, Cell Res., 2007, vol. 17, pp. 638–649.CrossRefGoogle Scholar
  25. 25.
    He, J., Ren, Y., Chen, X., and Chen, H., Protective roles of nitric oxide on seed germination and seedling growth of rice (Oryza sativa L.) under cadmium stress, Ecotoxicol. Environ. Saf., 2014, vol. 108, pp. 114–119.CrossRefGoogle Scholar
  26. 26.
    Corpas, F.J., Leterrier, M., Valderrama, R., Airaki, M., Chaki, M., Palma, J.M., and Barroso, J.B., Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress, Plant Sci., 2011, vol. 181, pp. 604–611.CrossRefGoogle Scholar
  27. 27.
    Wu, M., Wang, F., Zhang, C., Xie, Y., Han, B., Huang, J., and Shen, W., Heme oxygenase-1 is involved in nitric oxide- and cGMP-induced Amy2/54 gene expression in GA-treated wheat aleurone layers, Plant Mol. Biol., 2013, vol. 81, nos. 1–2, pp. 27–40.Google Scholar
  28. 28.
    Kołodziejczyk, I., Dzitko, K., Szewczyk, R., and Posmyk, M.M., Exogenous melatonin expediently modifies proteome of maize (Zea mays L.) embryo during seed germination, Acta Physiol. Plant., 2016, vol. 38: 146.Google Scholar
  29. 29.
    Shi, H., Wang, X., Tan, D.X., Reiter, R.J., and Chan, Z., Comparative physiological and proteomic analyses reveal the actions of melatonin in the reduction of oxidative stress in Bermuda grass (Cynodon dactylon (L.). Pers.), J. Pineal Res., 2015, vol. 59, pp. 120–131.CrossRefGoogle Scholar
  30. 30.
    Weeda, S., Zhang, N., Zhao, X., Ndip, G., Guo, Y., Buck, G.A., Fu, C., and Ren, S., Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems, PLoS One, 2014, vol. 9, no. 3: e93462.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Plant Biology Department, Science Faculty, Shahrekord UniversityShahrekordIran

Personalised recommendations