Advertisement

Russian Journal of Plant Physiology

, Volume 65, Issue 6, pp 857–864 | Cite as

Overexpression of Malus hupehensis MhSHN1 Gene Enhances Salt and Osmotic Stress Tolerance in Transgenic Tobacco Plants

  • J. Y. Zhang
  • H. T. Luo
  • Z. R. Guo
Research Papers

Abstract

Plant APETALA2/Ethylene-responsive element binding factor (AP2/ERF) transcription factor involved in various biological functions such as plant development, flower development, fruit and seed maturation, wounding, pathogen defense, high salty, drought, and so on. Here, we reported the function analysis of an AP2/ERF member, MhSHN1, from Malus hupehensis (Pamp.) Rehder. The MhSHN1 gene has a total of 1171 bp and consists of two exons of 81 and 531 bp, one intron of 559 bp. Phylogenetic analysis indicated MhSHN1 belongs to group V. The expression of MhSHN1 was highest in flower, then in seed and fruit, with low expression in root, leaves and stems. The MhSHN1 transcripts were barely affected by jasmonic acid (JA) and 1-aminocyclopropane- 1-carboxylic acid (ACC) within the first 48 h of treatment. Salicylic acid (SA) and abscisic acid (ABA) induce significantly the expression of MhSHN1. MhSHN1 mRNA levels were increased in response to mannitol and salt treatments. However, low temperature could not induce the expression of MhSHN1 gene. Overexpression of the MhSHN1 gene does not regulate seed germination but does positively regulate plant tolerance to salt and osmotic stresses at the stage of seed germination. These results showed the MhSHN1 gene play key role in resistance to mannitol and salt stresses in M. hupehensis.

Keywords

Malus hupehensis MhSHN1 gene gene expression function analysis mannitol stress salt stress 

Abbreviations

ACC

1-aminocyclopropane-1-carboxylic acid

AP2/ERF

APETALA2/Ethylene-responsive element binding factor

WT

wild type

MeJA

methyl jasmonate

qRT-PCR

quantitative reverse-transcriptase PCR

WIN1/SHN1

Wax inducer/shine1

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koryachko, A., Matthiadis, A., Ducoste, J.J., Tuck, J., Long, T.A., and Williams, C., Computational approaches to identify regulators of plant stress response using high-throughput gene expression data, Curr. Plant Biol., 2015, vols. 3–4, pp. 20–29.CrossRefGoogle Scholar
  2. 2.
    Zhang, J.Y., Wang, Q.J., and Guo, Z.R., Progresses on plant AP2/ERF transcription factors, Hereditas, 2012, vol. 34, pp. 835–847.CrossRefPubMedGoogle Scholar
  3. 3.
    Müller, M. and Munné-Bosch, S., Ethylene response factors: a key regulatory hub in hormone and stress signaling, Plant Physiol., 2015, vol. 169, pp. 32–41.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Djemal, R. and Khoudi, H., Isolation and molecular characterization of a novel WIN1/SHN1 ethyleneresponsive transcription factor TdSHN1 from durum wheat (Triticum turgidum L. subsp. durum), Protoplasma, 2015, vol. 252, pp. 1461–1473.CrossRefPubMedGoogle Scholar
  5. 5.
    Djemal, R. and Khoudi, H., TdSHN1, a WIN1/SHN1- type transcription factor, imparts multiple abiotic stress tolerance in transgenic tobacco, Environ. Exp. Bot., 2016, vol. 131, pp. 89–100.CrossRefGoogle Scholar
  6. 6.
    Zhang, J.Y., Qu, S.C., Du, X.L., Qiao, Y.S., Cai, B.H., Guo, Z.R., and Zhang, Z., Overexpression of the Malus hupehensis mhtga2 gene, a novel bzip transcription factor for increased tolerance to salt and osmotic stress in transgenic tobacco, Int. J. Plant Sci., 2012, vol. 173, pp. 441–453.CrossRefGoogle Scholar
  7. 7.
    Zhang, J., Qu, S., Dong, C., Gao, Z., Qiao, Y., and Zhang, Z., Utility and construction of full-length cDNA library of Malus hupehensis post-introduced with salicylic acid, Acta Bot. Boreali-Occident Sin., 2010, vol. 30, pp. 1527–1533.Google Scholar
  8. 8.
    Tong, Z., Wang, F., Zhang, Z., Zhao, J., Zhang, K., Yan, G., Zhou, Y., and Jiang, L., A method for DNA extraction from mature leaves of fruit trees, J. Fruit Sci., 2008, vol. 25, pp. 122–125.Google Scholar
  9. 9.
    Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S., MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, pp. 2725–2729.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang, J.Y., Qiao, Y.S., Lv, D., Gao, Z.H., Qu, S.C., and Zhang, Z., Malus hupehensis NPR1 induces pathogenesis- related protein gene expression in transgenic tobacco, Plant Biol., 2012, vol., 14, suppl. 1, pp. 46–56.CrossRefPubMedGoogle Scholar
  11. 11.
    Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2–[delta][delta]CT method, Methods, 2001, vol. 25, pp. 402–408.CrossRefPubMedGoogle Scholar
  12. 12.
    Koornneef, A. and Pieterse, C.M., Cross talk in defense signaling, Plant Physiol., 2008, vol. 146, pp. 839–844.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Xu, Y. and Wu, H., Zhao, M., Wu, W., Xu, Y., and Gu, D., Overexpression of the transcription factors GmSHN9 differentially regulates wax and cutin biosynthesis, alters cuticle properties, and changes leaf phenotypes in Arabidopsis, Int. J. Mol. Sci., 2016, vol. 17, no. 4: e587.CrossRefPubMedGoogle Scholar
  14. 14.
    Shi, J.X., Malitsky, S., de Oliveira, S., Branigan, C., Franke, R.B., Schreiber, L., and Aharoni, A., SHINE transcription factors act redundantly to pattern the archetypal surface of Arabidopsis flower organs, PLoS Genet., 2011, vol. 7: e1001388.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Aharoni, A., Dixit, S., Jetter, R., Thoenes, E., Arkel, G., and Pereiraa, A., The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis, Plant Cell, 2004, vol. 16, pp. 2463–2480.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Broun, P., Poindexter, P., Osborne, E., Jiang, C.Z., and Riechmann, J.L., WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 4706–4711.CrossRefPubMedGoogle Scholar
  17. 17.
    Jager, K., Misko, A., Fabian, A., Deak, C., Kiss-Baba, E., Polgari, D., Barnabas, B., and Papp, I., Expression of a WIN/SHN-type regulator from wheat triggers disorganized proliferation in the Arabidopsis leaf cuticle, Biol. Plant., 2015, vol. 59, pp. 29–36.CrossRefGoogle Scholar
  18. 18.
    Lashbrooke, J., Aharoni, A., and Costa, F., Genome investigation suggests MdSHN3, an APETALA2-domain transcription factor gene, to be a positive regulator of apple fruit cuticle formation and an inhibitor of russet development, J. Exp. Bot., 2015, vol. 66, pp. 6579–6589.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Shi, J.X., Adato, A., Alkan, N., He, Y., Lashbrooke, J., Matas, A.J., Meir, S., Malitsky, S., Isaacson, T., Prusky, D., Leshkowitz, D., Schreiber, L., Granell, A.R., Widemann, E., Grausem, B., et al., The tomato SlSHINE3 transcription factor regulates fruit cuticle formation and epidermal patterning, New Phytol., 2013, vol. 197, pp. 468–480.CrossRefPubMedGoogle Scholar
  20. 20.
    Wang, Y., Wan, L., Zhang, L., Zhang, Z., Zhang, H., Quan, R., Zhou, S., and Huang, R., An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice, Plant Mol. Biol., 2012, vol. 78, pp. 275–288.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhou, X.Y., Jenks, M.A., Liu, J., Liu, A.L., Zhang, X.W., Xiang, J.H., Zou, J., Peng, Y., and Chen, X.B., Overexpression of transcription factor OsWR2 regulates wax and cutin biosynthesis in rice and enhances its tolerance to water deficit, Plant Mol. Biol. Rep., 2014, vol. 32, pp. 719–731.CrossRefGoogle Scholar
  22. 22.
    Chen, X., Goodwin, S.M., Boroff, V.L., Liu, X., and Jenks, M.A., Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production, Plant Cell, 2003, vol. 15, pp. 1170–1185.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Islam, M.A., Du, H., Ning, J., Ye, H., and Xiong, L., Characterization of Glossy1-homologous genes in rice involved in leaf wax accumulation and drought resistance, Plant Mol. Biol., 2009, vol. 70, pp. 443–456.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang, J.Y., Broeckling, C.D., Sumner, L.W., and Wang, Z.Y., Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance, Plant Mol. Biol., 2007, vol. 64, pp. 265–278.CrossRefPubMedGoogle Scholar
  25. 25.
    Sela, D., Buxdorf, K., Shi, J.X., Feldmesser, E., Schreiber, L., Aharoni, A., and Levy, M., Overexpression of AtSHN1/WIN1 provokes unique defense responses, PLoS One, 2013, vol. 8: e70146.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of BotanyJiangsu Province and Chinese Academy of SciencesNanjingChina
  2. 2.Jiangsu Key Laboratory for the Research and Utilization of Plant ResourcesNanjingChina

Personalised recommendations