Russian Journal of Plant Physiology

, Volume 65, Issue 6, pp 771–783 | Cite as

Principles of Calcium Signal Generation and Transduction in Plant Cells

  • S. S. Medvedev


Calcium ions exhibit unique properties and a universal ability to transmit diverse signals in plant cells under the primary action of hormones, pathogens, light, gravity, and various abiotic stressors. In the last few years, considerable progress has been achieved in deciphering the mechanisms of Ca2+ involvement in the regulation of plant responses. Recent studies revealed the genes encoding Ca2+-permeable channels that conduct Ca2+ currents across the membranes during the transduction of the Ca2+ signal. These proteins comprise the ligand-gated Ca2+-permeable channels activated by cyclic nucleotides (CNGC) and amino acids (glutamate receptor-like channels, GLR), the voltage-gated tonoplast channel (two-pore channel, TPC1), mechanosensitive channels (MSL, MCA, OSCA1), and annexins. The role of Ca2+-ATPase and Ca2+/H+-exchangers in the active extrusion of excess cytoplasmic Ca2+ into the apoplast or cell organelles was examined in detail. The calmodulins (CaM), CaM-like proteins (CML), Ca2+-dependent protein kinases (CDPK), and complexes of calcineurin-B-like proteins (CBL) with CBL-interacting protein kinases (CIPK) were found to produce intricate signaling networks that decode Ca2+ signals and elicit plant responses to external stimuli. This review analyzes the data accumulated over the past decade on the principles of formation and propagation of the calcium signal in plant cells.


plants calcium calcium signaling Ca2+-permeable channels Ca2+-ATPases Ca2+/H+-exchangers calcium spikes waves oscillations Ca2+-binding sensor proteins signal transduction 



plasma membrane Ca2+ pumps


concentration of ionized cytoplasmic calcium


Ca2+/cation antiporters




H+/cation exchanger


calcineurin-B-like proteins


calcium-dependent protein kinase


CBLinteracting protein kinases


calmodulin-like proteins


cyclic nucleotide-gated nonselective channels


depolarization-activated Ca2+-channels


endoplasmic reticulum-type Ca2+-pumping ATPase


glutamate receptor-like nonselective channels


hyperpolarization-activated Ca2+-channels




reactive oxygen species


slow vacuolar channels


two-pore Ca2+-permeable channel


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Medvedev, S.S., Calcium signaling system in plants, Russ. J. Plant Physiol., 2005, vol. 52, pp. 249–270.CrossRefGoogle Scholar
  2. 2.
    Kudla, J., Batistic, O., and Hashimoto, K., Calcium signals: the lead currency of plant information processing, Plant Cell, 2010, vol. 22, pp. 541–563.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dodd, A.N., Kudla, J., and Sanders, D., The language of calcium signaling, Annu. Rev. Plant Biol., 2010, vol. 61, pp. 593–620.CrossRefPubMedGoogle Scholar
  4. 4.
    Matschi, S., Werner, S., Schulze, W.X., Legen, J., Hilger, H.H., and Romeis, T., Function of calciumdependent protein kinase CPK28 of Arabidopsis thaliana in plant stem elongation and vascular development, Plant J., 2013, vol. 73, pp. 883–896.CrossRefPubMedGoogle Scholar
  5. 5.
    Qu, H., Zhang, Z., Wu, F., and Wang, Y., The role of Ca2+ and Ca2+ channels in the gametophytic selfincompatibility of Pyrus pyrifolia, Cell Calcium, 2016, vol. 60, pp. 299–308.CrossRefPubMedGoogle Scholar
  6. 6.
    Singh, S. and Parniske, M., Activation of calcium- and calmodulin-dependent protein kinase (CCaMK), the central regulator of plant root endosymbiosis, Curr. Opin. Plant Biol., 2012, vol. 15, pp. 444–453.CrossRefPubMedGoogle Scholar
  7. 7.
    Miller, J.B., Pratap, A., Miyahara, A., Zhou, L., Bornemann, S., Morris, R.J., and Oldroyd, G.E.D., Calcium/calmodulin-dependent protein kinase is negatively and positively regulated by calcium providing a mechanism for decoding calcium responses during symbiosis signaling, Plant Cell, 2013, vol. 25, pp. 5053–5066.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Seybold, H., Trempel, F., Ranf, S., Scheel, D., Romeis, T., and Lee, J., Ca2+-signalling in plant immune response: from pattern recognition receptors to Ca2+ decoding mechanisms, New Phytol., 2014, vol. 204, pp. 782–790.CrossRefPubMedGoogle Scholar
  9. 9.
    Romeis, T. and Herde, M., From local to global: CDPKs in systemic defense signaling upon microbial and herbivore attack, Curr. Opin. Plant Biol., 2014, vol. 20, pp. 1–10.CrossRefPubMedGoogle Scholar
  10. 10.
    Tatsumi, H., Toyota, M., Furuichi, T., and Sokabe, M., Calcium mobilizations in response to changes in the gravity vector in Arabidopsis seedlings: possible cellular mechanisms, Plant Signal. Behav., 2014, vol. 9: e29099.CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Pedmale, U.V., Celaya, R.B., and Liscuma, E., Phototropism: mechanism and outcomes, Arabidopsis Book, 2010, vol. 8: e0125. doi 10.1199/tab.0125CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hepler, P.K., The cytoskeleton and its regulation by calcium and protons, Plant Physiol., 2016, vol. 170, pp. 3–22.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bürstenbinder, K., Möller, B., Plötner, R., Stamm, G., Hause, G., Mitra, D., and Abel, S., The IQD family of calmodulin-binding proteins links calcium signaling to microtubules, membrane subdomains, and the nucleus, Plant Physiol., 2017, vol. 173, pp. 1692–1708.PubMedGoogle Scholar
  14. 14.
    Brandt, B., Munemasa, S., Wang, C., Nguyen, D., Yong, T., Yang, P.G., Poretsky, E., Belknap, Th.F., Waadt, R., Aleman, F., and Schroeder, J.I., Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells, eLife, 2015, vol. 4. doi 10.7554/eLife.03599Google Scholar
  15. 15.
    Voss, L.J., Hedrich, R., and Roelfsema, M.R.G., Current injection provokes rapid expansion of the guard cell cytosolic volume and triggers Ca2+ signals, Mol. Plant, 2016, vol. 9, pp. 471–480.CrossRefPubMedGoogle Scholar
  16. 16.
    Yang, D.L., Shi, Z., Bao, Y., Yan, J., Yang, Z., Yu, H., Li, Y., Gou, M., Wang, S., Zou, B., Xu, D., Ma, Z., Kim, J., and Hua, J., Calcium pumps and interacting BON1 protein modulate calcium signature, stomatal closure, and plant immunity, Plant Physiol., 2017, vol. 175, pp. 424–437. doi 10.1104/pp.17.00495PubMedGoogle Scholar
  17. 17.
    Medvedev, S.S., Mechanisms and physiological role of polarity in plants, Russ. J. Plant Physiol., 2012, vol. 59, pp. 502–514.CrossRefGoogle Scholar
  18. 18.
    Konrad, K.R., Wudick, M.M., and Feijo, J.A., Calcium regulation of tip growth: new genes for old mechanisms, Curr. Opin. Plant Biol., 2011, vol. 14, pp. 721–730.CrossRefPubMedGoogle Scholar
  19. 19.
    Hepler, P.K., Kunkel, J.G., Rounds, C.M., and Winship, L.J., Calcium entry into pollen tubes, Trends Plant Sci., 2012, vol. 17, pp. 33–38.CrossRefGoogle Scholar
  20. 20.
    Gao, Q.F., Gu, L.L., Wang, H.Q., Fei, C.F., Fang, X., Hussain, J., Suna, S.J., Dong, J.Y., Liu, H., and Wang, Y.F., Cyclic nucleotide-gated channel 18 is an essential Ca2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis, Proc. Natl. Acad. Sci. USA, 2016, vol. 113, pp. 3096–3101. doi 10.1073/pnas.1524629113CrossRefPubMedGoogle Scholar
  21. 21.
    Zeng, H., Xu, L., Singh, A., Wang, H., Du, L., and Poovaiah, B.W., Involvement of calmodulin and calmodulin- like proteins in plant responses to abiotic stresses, Front. Plant Sci., 2015, vol. 6: 600. doi 10.3389/fpls.2015.00600PubMedPubMedCentralGoogle Scholar
  22. 22.
    Wilkins, K.A., Matthus, E., Swarbreck, S.M., and Davies, J.M., Calcium-mediated abiotic stress signaling in roots, Front. Plant Sci., 2016, vol. 7: 1296. doi 10.3389/fpls.2016.01296CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jeon, J. and Kim, J., Cold stress signaling networks in Arabidopsis, J. Plant Biol., 2013, vol. 56, pp. 69–76. doi 10.1007/s12374-013-0903-yCrossRefGoogle Scholar
  24. 24.
    Zhang, Y., Wang, Y., Taylor, J.L., Jiang, Z., Zhang, S., Mei, F., Wu, Y., Wu, P., and Ni, J., Aequorin-based luminescence imaging reveals differential calcium signalling responses to salt and reactive oxygen species in rice roots, J. Exp. Bot., 2015, vol. 66, pp. 2535–2545.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bickerton, P., Sello, S., Brownlee, C., Pittman, J.K., and Wheeler, G.L., Spatial and temporal specificity of Ca2+ signalling in Chlamydomonas reinhardtii in response to osmotic stress, New Phytol., 2016, vol. 212, pp. 920–933.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kiep, V., Vadaßsery, J., Lattke, J., Maa{, J.-P., Boland, W., Peiter, E., and Mithofer, A., Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis, New Phytol., 2015, vol. 207, pp. 996–1004.CrossRefPubMedGoogle Scholar
  27. 27.
    Demidchik, V., Shabala, S.N., and Davies, J.M., Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels, Plant J., 2007, vol. 49, pp. 377–386. doi 10.1111/j.1365-313X.2006.02971.xCrossRefPubMedGoogle Scholar
  28. 28.
    Steinhorst, L. and Kudla, J., Calcium and reactive oxygen species rule the waves of signaling, Plant Physiol., 2013, vol. 16, pp. 471–485.CrossRefGoogle Scholar
  29. 29.
    Gilroy, S., Bialasek, M., Suzuki, N., Górecka, M., Devireddy, A.R., Karpinski, S., and Mittler, R., ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants, Plant Physiol., 2016, vol. 171, no. 3, pp. 1606–1615. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Edel, K.H. and Kudla, J., Integration of calcium and ABA signaling, Curr. Opin. Plant Biol., 2016, vol. 33, pp. 83–91.CrossRefPubMedGoogle Scholar
  31. 31.
    Vanneste, S. and Friml, J., Calcium: the missing link in auxin action, Plants, 2013, vol. 2, pp. 650–675. doi 10.3390/plants2040650CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Dindas, J., Scherzer, S., Roelfsema, M.R.G., von Meyer, K., Müller, H.M., Al-Rasheid, K.A.S., Palme, K., Dietrich, P., Becker, D., Bennett, M.J., and Hedrich, R., AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling, Nature, 2018, vol. 9: 1174. doi 10.1038/s41467-018-03582-5Google Scholar
  33. 33.
    Zhang, H., van Helden, D.F., McCurdy, D.W., Offler, C.E., and Patrick, J.W., Plasma membrane Ca2+-permeable channels are differentially regulated by ethylene and hydrogen peroxide to generate persistent plumes of elevated cytosolic Ca2+ during transfer cell trans-differentiation, Plant Cell Physiol., 2015, vol. 56, pp. 1711–1720. doi 10.1093/pcp/pcv100CrossRefPubMedGoogle Scholar
  34. 34.
    Straltsova, D., Chykun, P., Subramaniam, S., Sosan, A., Kolbanov, D., Sokolik, A., and Demidchik, V., Cation channels are involved in brassinosteroid signalling in higher plants, Steroids, 2015, vol. 97, pp. 98–106.CrossRefPubMedGoogle Scholar
  35. 35.
    Bender, K.W., Dobney, S., Ogunrinde, A., Chiasson, D., Mullen, R.T., Teresinski, H.J., Singh, P., Munro, K., Smith, S.P., and Snedden, W.A., The calmodulin-like protein CML43 functions as a salicylic acid-inducible root-specific Ca2+ sensor in Arabidopsis, Biochem. J., 2014, vol. 457, pp. 127–136. doi 10.1042/BJ20131080CrossRefPubMedGoogle Scholar
  36. 36.
    Scholz, S.S., Vadassery, J., Heyer, M., Reichelt, M., Bender, K.W., Snedden, W.A., Boland, W., and Mithöfer, A., Mutation of the Arabidopsis calmodulinlike protein CML37 deregulates the jasmonate pathway and enhances susceptibility to herbivory, Mol. Plant, 2014, vol. 7, pp. 1712–1726.CrossRefPubMedGoogle Scholar
  37. 37.
    Stael, S., Wurzinger, B., Mair, A., Mehlmer, N., Vothknecht, U.C., and Teige, M., Plant organellar calcium signalling: an emerging field, J. Exp. Bot., 2012, vol. 63, pp. 1525–1542. doi 10.1093/jxb/err394CrossRefPubMedGoogle Scholar
  38. 38.
    Demidchik, V. and Shabala, S., Mechanisms of cytosolic calcium elevation in plants: the role of ion channels, calcium extrusion systems and NADPH oxidasemediated 'ROS-Ca2+ Hub’, Funct. Plant Biol., 2018, vol. 45, no. 2: 9.
  39. 39.
    Bonza, M.C. and de Michelis, M.I., The plant Ca2+-ATPase repertoire: biochemical features and physiological functions, Plant Biol., 2011, vol. 13, pp. 421–430.CrossRefPubMedGoogle Scholar
  40. 40.
    Pittman, J.K. and Hirshi, K.D., CAX-ing a wide net: cation/H+ transporters in metal remediation and abiotic stress signaling, Plant Biol., 2016, vol. 18, pp. 741–749.CrossRefPubMedGoogle Scholar
  41. 41.
    Ward, J.M., Mäser, P., and Schroeder, J., Plant ion channels: gene families, physiology, and functional genomics analyses, Annu. Rev. Physiol., 2009, vol. 71, pp. 59–82. doi 10.1146/annurev.physiol.010908.163204CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hedrich, R., Ion channels in plants, Physiol. Rev., 2012, vol. 92, pp. 1777–1811. doi 10.1152/physrev.00038.2011CrossRefPubMedGoogle Scholar
  43. 43.
    Swarbreck, S.M., Colaco, R., and Davies, J.M., Plant calcium-permeable channels, Plant Physiol., 2013, vol. 163, pp. 514–522. doi 10.1104/pp.113.220855CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Pottosin, I. and Dobrovinskaya, O., Two-pore cation (TPC) channel: not a shorthanded one, Funct. Plant Biol., 2016, vol. 45, no. 2, pp. 83–92. CrossRefGoogle Scholar
  45. 45.
    Kintzer, A.F. and Stroud, R.M., Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana, Nature, 2016, vol. 531, pp. 258–264. doi 10.1038/nature17194CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Demidchik, V., Shang, Z., Shin, R., Shabala, S., and Davies, J.M., Receptor-like activity evoked by extracellular ADP in Arabidopsis thaliana root epidermal plasma membrane, Plant Physiol., 2011, vol. 156, pp. 1375–1385. doi 10.1104/pp.111.174722CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ordonez, N.M., Marondedze, C., Thomas, L., Pasqualini, S., Shabala, L., Shabala, S., and Gehring, C., Cyclic mononucleotides modulate potassium and calcium flux responses to H2O2 in Arabidopsis roots, FEBS Lett., 2014, vol. 588, pp. 1008–1015.CrossRefPubMedGoogle Scholar
  48. 48.
    Ali, R., Ma, W., Lemtiri-Chlieh, F., Tsaltas, D., Leng, Q., von Bodman, S., and Berkowitz, G.A., Death don’t have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity, Plant Cell, 2007, vol. 19, pp. 1081–1095.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Fischer, C., Kugler, A., Hoth, S., and Dietrich, P., An IQdomain mediates the interaction with calmodulin in a plant cyclic nucleotide-gated channel, Plant Cell Physiol., 2013, vol. 54, pp. 573–584.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Bender, K.W. and Snedden, W.A., Calmodulinrelated proteins step out from the shadow of their namesake, Plant Physiol., 2013, vol. 163, pp. 486–495.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ma, W. and Berkowitz, G.A., Ca2+ conduction by plant cyclic nucleotide-gated channels and associated signaling components in pathogen defense signal transduction cascades, New Phytol., 2011, vol. 190, pp. 566–572. doi 10.1111/j.1469-8137.2010.03577.xCrossRefPubMedGoogle Scholar
  52. 52.
    Jha, S.K., Sharma, M., and Pandey, G.K., Role of cyclic nucleotide gated channels in stress management in plants, Curr. Genomics, 2016, vol. 17, pp. 315–329.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Gao, Q.F., Fei, C.F., Dong, J.Y., Gu, L.L., and Wang, Y.F., Arabidopsis CNGC18 is a Ca2+-permeable channel, Mol. Plant, 2014, vol. 7, pp. 739–743. doi 10.1093/mp/sst174CrossRefPubMedGoogle Scholar
  54. 54.
    Vincill, E.D., Bieck, A.M., and Spalding, E.P., Ca2+ conduction by an amino acid-gated ion channel related to glutamate receptors, Plant Physiol., 2012, vol. 159, pp. 40–46.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kong, D., Ju, Ch., Parihar, A., Kim, S., Cho, D., and Kwak, J.M., Arabidopsis glutamate receptor homolog 3.5 modulates cytosolic Ca2+ level to counteract effect of abscisic acid in seed germination, Plant Physiol., 2015, vol. 167, pp. 1630–1642.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Weiland, M., Mancuso, S., and Baluska, F., Signalling via glutamate and GLRs in Arabidopsis thaliana, Funct. Plant Biol., 2015, vol. 43, pp. 1–25.CrossRefGoogle Scholar
  57. 57.
    Vincill, E.D., Clarin, A.E., Molenda, J.N., and Spalding, E.P., Interacting glutamate receptor-like proteins in phloem regulate lateral root initiation in Arabidopsis, Plant Cell, 2013, vol. 25, pp. 1304–1313.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Forde, B.G. and Roberts, M.R., Glutamate receptorlike channels in plants: a role as amino acid sensors in plant defence? F1000Prime Rep., 2014, vol. 6, pp. 1–7. doi 10.12703/P6-37CrossRefGoogle Scholar
  59. 59.
    Kurusu, T., Kuchitsu, K., Nakano, M., Nakayama, Y., and Iida, H., Plant mechanosensing and Ca2+ transport, Trends Plant Sci., 2013, vol. 18, pp. 227–233.CrossRefPubMedGoogle Scholar
  60. 60.
    Hamilton, E.S., Schlegel, A.M., and Haswell, E.S., United in diversity: mechanosensitive ion channels in plants, Annu. Rev. Plant Biol., 2015, vol. 66, pp. 113–137. doi 10.1146/annurev-arplant-043014-114700CrossRefPubMedGoogle Scholar
  61. 61.
    Yuan, F., Yang, H., Xue, Y., Kong, D., Ye, R., Li, C., Zhang, J., Theprungsirikul, L., Shrift, T., Krichilsky, B., Johnson, D.M., Swift, G.B., He, Y., Siedow, J.N., and Pei, Z.M., OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis, Nature, 2014, vol. 514, pp. 367–371. doi 10.1038/nature13593CrossRefPubMedGoogle Scholar
  62. 62.
    Davies, J.M., Annexin-mediated calcium signalling in plants, Plants, 2014, vol. 3, pp. 128–140. doi 10.3390/plants3010128CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Xu, L., Tang, Y., Gao, S., Su, S., Hong, L., Wang, W., Fang, Z., Li, X., Ma, J., Quan, W., Sun, H., Li, X., Wang, Y., Liao, X., Gao, J., et al., Comprehensive analyses of the annexin gene family in wheat, BMC Genomics, 2016, vol. 17: 415. doi 10.1186/s12864-016-2750-yCrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Laohavisit, A., Mortimer, J.C., Demidchik, V., Coxon, K.M., Stancombe, M.A., Macpherson, N., Brownlee, C., Hofmann, A., Webb, A.A., Miedema, H., Battey, N.H., and Daies, J.M., Zea mays annexins modulate cytosolic free Ca2+ and generate a Ca2+-permeable conductance, Plant Cell, 2009, vol. 21, pp. 479–493. doi 10.1105/tpc.108.059550CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Richards, S.L., Laohavisit, A., Mortimer, J.C., Shabala, L., Swarbreck, S.M., Shabala, S., and Davies, J.M., Annexin 1 regulates the H2O2-induced calcium signature in Arabidopsis thaliana roots, Plant J., 2014, vol. 77, pp. 136–145.CrossRefPubMedGoogle Scholar
  66. 66.
    Sze, H., Liang, F., Hwang, I., Curran, A.C., and Harper, J.F., Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast, Annu. Rev. Plant Physiol. Plant Mol. Biol., 2000, vol. 51, pp. 433–462.CrossRefPubMedGoogle Scholar
  67. 67.
    Bose, J., Pottosin, I.I., Shabala, S.S., Palmgren, M.G., and Shabala, S., Calcium efflux systems in stress signaling and adaptation in plants, Front. Plant Sci., 2011, vol. 2: 85. doi 10.3389/fpls.2011.00085CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Tidow, H., Poulsen, L.R., Andreeva, A., Knudsen, M., Hein, K.L., Wiuf, C., Palmgren, M.G., and Nissen, P., A bimodular mechanism of calcium control in eukaryotes, Nature, 2012, vol. 491, pp. 468–472. doi 10.1038/nature11539CrossRefPubMedGoogle Scholar
  69. 69.
    Yadav, A.K., Shankar, A., Jha, S.K., Kanwar, P., Pandey, A., and Pandey, G.K., A rice tonoplastic calcium exchanger, OsCCX2 mediates Ca2+/cation transport in yeast, Sci. Rep., 2015, vol. 5: 17117. doi 10.1038/srep17117CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Hirschi, K., Vacuolar H+/Ca2+ transport: who’s directing the traffic? Trends Plant Sci., 2001, vol. 6, pp. 100–104.CrossRefPubMedGoogle Scholar
  71. 71.
    Pittman, J.K. and Hirshi, K.D., Don’t shoot the [second] messenger: endomembrane transporters and binding proteins modulate cytosolic Ca2+ levels, Curr. Opin. Plant Biol., 2003, vol. 6, pp. 257–262.CrossRefPubMedGoogle Scholar
  72. 72.
    Emery, L., Whelan, S., Hirschi, K.D., and Pittman, J.K., Protein phylogenetic analysis of Ca2+/cation antiporters and insights into their evolution in plants, Front. Plant Sci., 2012, vol. 3: 1. doi 10.3389/fpls.2012.00001CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Trewavas, A.J. and Malho, R., Ca2+ signalling in plant cells: the big network, Curr. Opin. Plant Biol., 1998, vol. 1, pp. 428–433.CrossRefPubMedGoogle Scholar
  74. 74.
    Malho, R., Moutinho, A., van der Luit, A., and Trewavas, A.J., Spatial characteristics of calcium signalling: the calcium wave as a basic unit in plant cell calcium signalling, Phil. Trans. R. Soc. Lond., 1998, vol. 353, pp. 1463–1473.CrossRefGoogle Scholar
  75. 75.
    McAinsh, M.R. and Pittman, J.K., Shaping the calcium signature, New Phytol., 2009, vol. 181, pp. 275–294. doi 10.1111/j.1469-8137.2008.02682.xCrossRefPubMedGoogle Scholar
  76. 76.
    Evans, M.J., Choi, W.G., Gilroy, S., and Morris, R.J.A., ROS-assisted calcium wave dependent on the AtRBOHD NADPH oxidase and TPC1 cation channel propagates the systemic response to salt stress, Plant Physiol., 2016, vol. 171, pp. 1771–1784.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Scrase-Field, S. and Knight, M.R., Calcium: just a chemical switch? Curr. Opin. Plant Biol., 2003, vol. 6, pp. 500–506.CrossRefPubMedGoogle Scholar
  78. 78.
    Granqvist, E., Wysham, D., Hazledine, S., Kozlowski, W., Sun, J., Charpentier, M., Martins, T.V., Haleux, P., Tsaneva-Atanasova, K., Downie, J.A., Oldroyd, G.E.D., and Morris, R.J., Buffering capacity explains signal variation in symbiotic calcium oscillations, Plant Physiol., 2012, vol. 160, pp. 2300–2310.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Monshausen, G.B., Messerli, M.A., and Gilroy, S., Imaging of the Yellow Cameleon 3.6 indicator reveals that elevations in cytosolic Ca2+ follow oscillating increases in growth in root hairs of Arabidopsis, Plant Physiol., 2008, vol. 7, pp. 1690–1698.CrossRefGoogle Scholar
  80. 80.
    Swanson, S.J. and Gilroy, S., Imaging changes in cytoplasmic calcium using the Yellow Cameleon 3.6 biosensor and confocal microscopy, Methods Mol. Biol., 2013, vol. 1009, pp. 291–302. doi 10.1007/978-1-62703-401-2_27CrossRefPubMedGoogle Scholar
  81. 81.
    Miwa, H., Sun, J., Oldroyd, G.E.D., and Downie, J.A., Analysis of calcium spiking using a cameleon calcium sensor reveals that nodulation gene expression is regulated by calcium spike number and the developmental status of the cell, Plant J., 2006, vol. 48, pp. 883–894.CrossRefPubMedGoogle Scholar
  82. 82.
    Choi, W.G., Toyota, M., Kim, S.H., Hilleary, R., and Gilroy, S., Salt stress induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants, Proc. Natl. Acad. Sci. USA, 2014, vol. 111, pp. 6497–6502.CrossRefPubMedGoogle Scholar
  83. 83.
    Xiong, T.C., Ronzier, E., Sanchez, F., Corratgé-Faillie, C., Mazars, C., and Thibaud, J.B., Imaging long distance propagating calcium signals in intact plant leaves with the BRET-based GFP-aequorin reporter, Front. Plant Sci., 2014, vol. 5: 43. doi 10.3389/fpls.2014.00043CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Hashimoto, K. and Kudla, J., Calcium decoding mechanisms in plants, Biochimie, 2011, vol. 93, pp. 2054–2059.CrossRefPubMedGoogle Scholar
  85. 85.
    Reddy, A.S.N., Ali, G.S., Celesnik, H., and Day, I.S., Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression, Plant Cell, 2011, vol. 23, pp. 2010–2032.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Ranty, B., Aldon, D., Cotelle, V., Galaud, J.-P., Thuleau, P., and Mazars, C., Calcium sensors as key hubs in plant responses to biotic and abiotic stresses, Front. Plant Sci., 2016, vol. 7: 327. doi 10.3389/fpls.2016.00327CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    McCormack, E., Tsai, Y.C., and Braam, J., Handling calcium signaling: Arabidopsis CaMs and CMLs, Trends Plant Sci., 2005, vol. 10, pp. 383–389.CrossRefPubMedGoogle Scholar
  88. 88.
    Liese, A. and Romeis, T., Biochemical regulation of in vivo function of plant calcium-dependent protein kinases (CDPK), Biochim. Biophys. Acta, 2013, vol. 1833, pp. 1582–1589.CrossRefPubMedGoogle Scholar
  89. 89.
    Poovaiah, B.W., Du, L., Wang, H., and Yang, T., Recent advances in calcium/calmodulin-mediated signaling with an emphasis on plant–microbe interactions, Plant Physiol., 2013, vol. 163, pp. 531–542.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Perochon, A., Aldon, D., Galaud, J.P., and Ranty, B., Calmodulin and calmodulin-like proteins in plant calcium signaling, Biochimie, 2011, vol. 93, pp. 2048–2053. doi 10.1016/j.biochi.2011.07.012CrossRefPubMedGoogle Scholar
  91. 91.
    Hamel, L.P., Sheen, J., and Seguin, A., Ancient signals: comparative genomics of green plant CDPKs, Trends Plant Sci., 2014, vol. 19, pp. 79–89.CrossRefPubMedGoogle Scholar
  92. 92.
    Cheng, S.H., Willmann, M.R., Chen, H.C., and Sheen, J., Calcium signalling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family, Plant Physiol., 2002, vol. 129, pp. 469–485.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Harper, J.F., Breton, G., and Harmon, A.C., Decoding Ca2+ signals through plant protein kinases, Annu. Rev. Plant Biol., 2004, vol. 55, pp. 263–288.CrossRefPubMedGoogle Scholar
  94. 94.
    Asano, T., Hayashi, N., Kikuchi, S., and Ohsugi, R., CDPK-mediated abiotic stress signaling, Plant Signal. Behav., 2012, vol. 7, pp. 817–821.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Schulz, P., Herde, M., and Romeis, T., Calciumdependent protein kinases: hubs in plant stress signaling and development, Plant Physiol., 2013, vol. 163, pp. 523–530.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Boudsocq, M. and Sheen, J., CDPKs in immune and stress signaling, Trends Plant Sci., 2013, vol. 18, pp. 30–40.CrossRefPubMedGoogle Scholar
  97. 97.
    Simeunovic, A., Mair, A., Wurzinger, B., and Teige, M., Know where your clients are: subcellular localization and targets of calcium-dependent protein kinases, J. Exp. Bot., 2016, vol. 67, pp. 3855–3872. doi 10.1093/jxb/erw157CrossRefPubMedGoogle Scholar
  98. 98.
    Batistic, O. and Kudla, J., Analysis of calcium signaling pathways in plants, Biochim. Biophys. Acta, 2012, vol. 1820, pp. 1283–1293.CrossRefPubMedGoogle Scholar
  99. 99.
    Luan, S., The CBL–CIPK network in plant calcium signaling, Trends Plant Sci., 2008, vol. 14, pp. 37–42.CrossRefPubMedGoogle Scholar
  100. 100.
    Weinl, S. and Kudla, J., The CBL–CIPK Ca2+-decoding signaling network: function and perspectives, New Phytol., 2009, vol. 184, pp. 517–528. CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Faculty of BiologySt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations