Russian Journal of Plant Physiology

, Volume 65, Issue 6, pp 882–889 | Cite as

Exogenous Melatonin Protects Canola Plants from Toxicity of Excessive Copper

  • V. P. Kholodova
  • S. V. Vasil’ev
  • M. V. Efimova
  • P. Yu. Voronin
  • Z. F. Rakhmankulova
  • E. Yu. Danilova
  • Vl. V. KuznetsovEmail author
Research Papers


Physiological mechanisms of canola (Brassica napus L., cv. Westar) plant protection afforded by melatonin (at 0.1–100 μM) from copper salts (at 10–100 μM) were studied. Plants were cultivated on Hoagland–Snyder medium. At the age of 5 weeks, they were subjected to melatonin, copper sulfate, or their combination for 7 days. It was found that excessive copper in a nutrient medium inhibited the dry biomass accumulation against the control by 25–85%. Copper sulfate diminished the content of chlorophylls and carotenoids and functional activity of the thylakoid membranes in the chloroplasts. It increased 2.0–2.5 times the lipid peroxidation (LPO) intensity and the proline level up to 20 times. Melatonin reduced the changes caused by copper, and the degree of the protection depended on melatonin and CuSO4 concentrations. It was found that melatonin decreased the oxidative stress and proline accumulation, both induced by CuSO4. At first, we established the positive correlation (with the coefficient 0.8240) between the level of oxidative stress and proline content in the presence of CuSO4. Possible mechanisms of protection by melatonin and its biological role under conditions of technogenic stress are discussed.


Brassica napus CO2/H2 gas exchange copper ions malondialdehyde melatonin photosynthetic pigments proline 



lipid peroxidation




nonphotochemical quenching


reactive oxygen species


photosystem II


photosynthetic quantum yield for PSII


maximal quantum yield


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hardeland, R., Neurobiology, pathophysiology, and treatment of melatonin deficiency and dysfunction, Sci. World J., 2012, vol. 2012: 640389.CrossRefGoogle Scholar
  2. 2.
    Johns, J.R. and Platts, J.A., Theoretical insight into the antioxidant properties of melatonin and derivatives, Org. Biomol. Chem., 2014, vol. 12, pp. 7820–7827.CrossRefPubMedGoogle Scholar
  3. 3.
    Arnao, M.B. and Hernandez-Ruiz, J., Functions of melatonin in plants: a review, J. Pineal Res., 2015, vol. 59, pp. 133–150.CrossRefPubMedGoogle Scholar
  4. 4.
    Posmyk, M.M. and Janas, K.M., Melatonin in plants, Acta Physiol. Plant., 2009, vol. 31, pp. 1–11.CrossRefGoogle Scholar
  5. 5.
    Hardeland, R., Melatonin in plants—diversity of levels and multiplicity of functions, Front. Plant Sci., 2016, vol. 7: 198. doi 10.3389/fpls.2016.00198CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Weeda, S., Zhang, N., Zhao, X., Ndip, G., Guo, Y., Buck, G.A., Fu, C., and Ren, S., Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems, PLoS One, 2014, vol. 9: e93462.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Garcia, J.J., Lorez-Pingarron, L., Almeida-Souza, P., Tres, F., Escudero, P., Garcia-Gil, F.A., Tan, D.X., Reiter, R.J., Ramires, J.M., and Bernal-Perez, M., Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: a review, J. Pineal Res., 2014, vol. 56, pp. 225–237.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang, Y.P., Yang, S.J., and Chen, Y.Y., Effects of melatonin on photosynthetic performance and antioxidants in melon during cold and recovery, Biol. Plant., 2017, vol. 61, pp. 571–578.CrossRefGoogle Scholar
  9. 9.
    Galano, A., Medina, M.E., and Tan, D.X., Melatonin and its metabolite as copper chelating agents and their role in inhibiting oxidative stress: a physiochemical analysis, J. Pineal Res., 2015, vol. 58, pp. 107–116.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang, N., Sun, Q., Zhang, H., Cao, Y., Weeda, S., Ren, S., and Guo, Y.D., Roles of melatonin in abiotic stress resistance in plants, J. Exp. Bot., 2015, vol. 66, pp. 647–656.CrossRefPubMedGoogle Scholar
  11. 11.
    Wang, Q., An, B., Shi, H., Luo, H., and He, C., High concentration of melatonin regulates leaf development by suppressing cell proliferation and endoreduplication in Arabidopsis, Int. J. Mol. Sci., 2017, vol. 18: e991. doi 10.3390/ijms18050991CrossRefPubMedGoogle Scholar
  12. 12.
    Yruela, I., Copper in plants: acquisition, transport and interactions, Funct. Plant Biol., 2009, vol. 36, pp. 409–430.CrossRefGoogle Scholar
  13. 13.
    Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water stress studies, Plant Soil, 1973, vol. 39, pp. 205–207.CrossRefGoogle Scholar
  14. 14.
    Lichtenthaler, H.K., Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Methods Enzymol., 1987, vol. 148, pp. 350–382.CrossRefGoogle Scholar
  15. 15.
    Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplasts. Kinetics and 18 stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, pp. 189–198.CrossRefPubMedGoogle Scholar
  16. 16.
    Voronin, P.Yu., Experimental installation for measurements of chlorophyll fluorescence, CO2 exchange, and transpiration of a detached leaf, Russ. J. Plant Physiol., 2014, vol. 61, pp. 269–273.CrossRefGoogle Scholar
  17. 17.
    Schreiber, U., Chlorophyll Fluorescence and Photosynthetic Energy Conversion: Simple Introductory Experiments with the TEACHING-PAM Chlorophyll Fluorometer, Effeltrich: Heinz Walz Gmb, 1997.Google Scholar
  18. 18.
    Arnao, M.B. and Hernandez-Ruiz, J., Chemical stress by different agents affects the melatonin content in barley roots, J. Pineal Res., 2009, vol. 46, pp. 295–299.CrossRefPubMedGoogle Scholar
  19. 19.
    Zlobin, I.E., Kholodova, V.P., Rakhmankulova, Z.F., and Kuznetsov, Vl.V., Brassica napus responses to shortterm excessive copper treatment with decrease of photosynthetic pigments, differential expression of heavy metal homeostasis genes including activation of gene nramp4 involved in stabilization of photosystem II, Photosynth. Res., 2015, vol. 125, pp. 141–150.CrossRefPubMedGoogle Scholar
  20. 20.
    Koca-Caliskan, U., Aka, C., and Bop, E., Melatonin in edible and no-edible plants, Turk. J. Pharm., 2017, vol. 14, pp. 75–83.CrossRefGoogle Scholar
  21. 21.
    Hasan, K., Ahammed, G.J., Yin, L., Shi, K., Xia, X., Zhou, Y., Yu, J., and Zhou, J., Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatin biosynthesis, vacuolar sequestration, and antioxidant potential of Solanum lycopersicum L., Front. Plant Sci., 2015, vol. 6: 601. doi 10.3389/fpls.2015.00601Google Scholar
  22. 22.
    Voronin, P.Yu. and Fedoseeva, G.P., Stomatal control of photosynthesis in detached leaves of woody and herbaceous plants, Russ. J. Plant Physiol., 2012, vol. 59, pp. 281–286.CrossRefGoogle Scholar
  23. 23.
    Signorelli, S., Coitino, E.L., Borsani, O., and Monsa, J., Molecular mechanisms for reactions between ·OH radicals and proline, J. Phys. Chem., 2014, vol. 118, pp. 137–147.CrossRefGoogle Scholar
  24. 24.
    Kuznetsov, Vl.V. and Shevyakova, N.I., Proline under stress: biological role, metabolism, and regulation, Russ. J. Plant Physiol., 1999, vol. 46, pp. 274–288.Google Scholar
  25. 25.
    Szabados, L. and Savoure, A., Proline: a multifunctional amino acid, Trends Plant Sci., 2009, vol. 15, pp. 89–97.CrossRefPubMedGoogle Scholar
  26. 26.
    Chen, J., Shafi, M., Li, S., Wang, Y., Wu, J., Ye, Z., Peng, D., Yan, W., and Liu, D., Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of Moso bamboo (Phyllostachys pubescens), Sci. Rep., 2015, vol. 5, pp. 135–154.Google Scholar
  27. 27.
    Aly, A.A. and Mohamed, A.A., The impact of copper ion on growth, thiol compounds and lipid peroxidation in two maize cultivars (Zea mays L.) grown in vitro, Aust. J. Crop. Sci., 2012, vol. 6, pp. 541–549.Google Scholar
  28. 28.
    Antoniou, C., Chatzimichail, G., Xenofontus, R., Pavlou, J.J., Panagiotou, E., Christou, A., and Fotopoulos, V., Melatonin systemically ameliorates droughtinduced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism, J. Pineal Res., 2017, vol. 62, no. 4: e12401. doi 10.1111/jpi.12401CrossRefGoogle Scholar
  29. 29.
    Liang, X., Zhang, L., Natarajan, S.K., and Becker, D.F., Proline mechanisms of stress survival, Antioxid. Redox Signal., 2013, vol. 19, pp. 998–1011.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sinha, S., Skukla, V.P., and Krishna, V., Percentage distribution and structural elucidation of quaternary metal chelates of proline with IMDA and uracil in aqueous medium, Inorg. Chem., 2016, vol. 11, pp. 58–64.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. P. Kholodova
    • 1
  • S. V. Vasil’ev
    • 1
  • M. V. Efimova
    • 1
    • 2
  • P. Yu. Voronin
    • 1
  • Z. F. Rakhmankulova
    • 1
  • E. Yu. Danilova
    • 3
  • Vl. V. Kuznetsov
    • 1
    • 2
    Email author
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Tomsk National Research State UniversityTomskRussia
  3. 3.Sechenov the First State Medical UniversityRussian Ministry of HealthMoscowRussia

Personalised recommendations