Advertisement

Russian Journal of Plant Physiology

, Volume 65, Issue 6, pp 801–812 | Cite as

Plastome Transcription Machinery and Peculiarities of the Expression of Its Genes during Cytokinin-Dependent Deetiolation of Arabidopsis thaliana

  • M. N. Danilova
  • A. S. Doroshenko
  • N. V. Kudryakova
  • A. A. Andreeva
  • V. V. Kusnetsov
Research Papers
  • 6 Downloads

Abstract

Molecular mechanisms of cytokinin effect as the key activators of chloroplast biogenesis have been thoroughly investigated in recent decades; however, the role of this class of phytohormones in the regulation of expression of the plastome transcription machinery genes is obscure. In order to look into the effect of the components of the cytokinin signal system on plastid transcription machinery during deetiolation, we analyzed light- and cytokinin-dependent expression dynamics of chloroplastic RNA-polymerases, PAP proteins, and transcription factors genes upon light exposure of 4-day-old seedlings of wild type Arabidopsis thaliana (L.) Heynh. (Columbia-0) and knockout mutants for perception and transduction of the cytokinin signal. Both agents exerted a selective influence on the expression of different genes of the plastome transcription machinery. The positive effect of light and cytokinin on deetiolation probably depended on the operation of receptors AHK3 and AHK4 and response regulator genes АRR1, АRR10, and ARR12.

Keywords

Arabidopsis thaliana deetiolation light cytokinins receptors plastome gene expression etioplasts chloroplasts 

Abbreviations

CK

cytokinins

EPR

endoplasmic reticulum

NEP

phage-type nuclear-encoded RNA-polymerase

PEP

multi-subunit plastid-encoded RNA-polymerase

PSII

photosystem 2

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liere, K., Weihe, A., and Börner, T., The transcription machineries of plant mitochondria and chloroplasts: composition, function, and regulation, J. Plant Physiol., 2011, vol. 168, pp. 1345–1360.CrossRefPubMedGoogle Scholar
  2. 2.
    Pogson, B.J., Ganguly, D., and Albrecht-Borth, V., Insights into chloroplast biogenesis and development, Biochim. Biophys. Acta, 2015, vol. 1847, pp. 1017–1024.CrossRefPubMedGoogle Scholar
  3. 3.
    Jarvis, P. and López-Juez, E., Biogenesis and homeostasis of chloroplasts and other plastids, Nat. Rev. Mol. Cell Biol., 2013, vol. 14, pp. 787–802.CrossRefPubMedGoogle Scholar
  4. 4.
    Ma, L., Li, J., Qu, L., Hager, J., Chen, Z., Zhao, H., and Deng, X.W., Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways, Plant Cell, 2001, vol. 13, pp. 2589–2607.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chen, M., Galvão, R.M., Li, M., Burger, B., Bugea, J., Bolado, J., and Chory, J., Arabidopsis HEMERA/pTAC12 initiates photomorphogenesis by phytochromes, Cell, 2010, vol. 141, pp. 1230–1240.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cortleven, A., Marg, I., Yamburenko, M.V., Schlicke, H., Hill, K., Grimm, B., Schaller, G.E., and Schmülling, T., Cytokinin regulates etioplast–chloroplast transition through activation of chloroplast-related genes, Plant Physiol., 2016, vol. 172, pp. 464–478.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chory, J., Reinecke, D., Sim, S., Washburn, T., and Brenner, M., A role for cytokinins in de-etiolation in Arabidopsis (det mutants have an altered response to cytokinins), Plant Physiol., 1994, vol. 104, pp. 339–347.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kusnetsov, V.V., Oelmüller, R., Sarwat, M.I., Porfirova, S.A., Cherepneva, G.N., Herrmann, R.G., and Kulaeva, O.N., Cytokinins, abscisic acid and light affect the accumulation of chloroplast proteins in Lupinus luteus cotyledons without notable effect on steady state mRNA levels, Planta, 1994, vol. 194, pp. 318–327.CrossRefGoogle Scholar
  9. 9.
    Riefler, M., Novak, O., Strnad, M., and Schmülling, T., Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development and cytokinin metabolism, Plant Cell, 2006, vol. 18, pp. 40–54.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Doroshenko, A.S., Danilova, M.N., Kudryakova, N.V., Solov’ev, A.A., and Kusnetsov, V.V., Cytokinin membrane receptors participate in regulation of plastid genome expression in the skotomorphogenesis, Dokl. Biochem. Biophys., 2016, vol. 469, no. 1, pp. 294–297.CrossRefPubMedGoogle Scholar
  11. 11.
    Lysenko, E.A., Plant sigma factors and their role in plastid transcription, Plant Cell Rep., 2007, vol. 26, pp. 845–859.CrossRefPubMedGoogle Scholar
  12. 12.
    Börner, T., Aleynikova, A.Y., Zubo, Y.O., and Kusnetsov, V.V., Chloroplast RNA polymerases: role in chloroplast biogenesis, Biochim. Biophys. Acta, 2015, vol. 1847, pp. 761–769.CrossRefPubMedGoogle Scholar
  13. 13.
    Pfannschmidt, T., Blanvillain, R., Merendino, L., Courtois, F., Chevalier, F., Liebers, M., Grübler, B., Hommel, E., and Lerbs-Mache, S., Plastid RNA polymerases: orchestration of enzymes with different evolutionary origins controls chloroplast biogenesis during the plant life cycle, J. Exp. Bot., 2015, vol. 66, pp. 6957–6973.CrossRefPubMedGoogle Scholar
  14. 14.
    Lichtenthaler, H.K., Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Methods Enzymol., 1987, vol. 148, pp. 350–382.CrossRefGoogle Scholar
  15. 15.
    Danilova, M.N., Kudryakova, N.V., Doroshenko, A.S., Zabrodin, D.A., Rakhmankulova, Z.F., Oelmüller, R., and Kusnetsov, V.V., Opposite roles of the Arabidopsis cytokinin receptors AHK2 and AHK3 in the expression of plastid genes and genes for the plastid transcriptional machinery during senescence, Plant Mol. Biol., 2017, vol. 93, pp. 533–546.CrossRefPubMedGoogle Scholar
  16. 16.
    Lomin, S.N., Krivosheev, D.M., Steklov, M.Y., Osolodkin, D.I., and Romanov, G.A., Receptor properties and features of cytokinin signaling, Acta Naturae, 2012, vol. 4, pp. 31–45.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Hajdukiewicz, P.T., Allison, L.A., and Maliga, P., The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids, EMBO J., 1997, vol. 16, pp. 4041–4048.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zoschke, R., Liere, K., and Börner, T., From seedling to mature plant: Arabidopsis plastidial genome copy number, RNA accumulation and transcription are differentially regulated during leaf development, Plant J., 2007, vol. 50, pp. 710–722.CrossRefPubMedGoogle Scholar
  19. 19.
    Ortelt, J. and Link, G., Plastid gene transcription: promoters and RNA polymerases, Methods Mol. Biol., 2014, vol. 1132, pp. 47–72.CrossRefPubMedGoogle Scholar
  20. 20.
    Lerbs-Mache, S., Function of plastid sigma factors in higher plants: regulation of gene expression or just preservation of constitutive transcription? Plant Mol. Biol., 2011, vol. 76, pp. 235–249.CrossRefPubMedGoogle Scholar
  21. 21.
    Nagashima, A., Hanaoka, M., Shikanai, T., Fujiwara, M., Kanamaru, K., Takahashi, H., and Tanaka, K., The multiple- stress responsive plastid sigma factor, SIG5, directs activation of the psbD blue light-responsive promoter (BLRP) in Arabidopsis thaliana, Plant Cell Physiol., 2004, vol. 45, pp. 357–368.CrossRefPubMedGoogle Scholar
  22. 22.
    Danilova, M.N., Doroshenko, A.S., Zabrodin, D.A., Kudryakova, N.V., Oelmüller, R., and Kusnetsov, V.V., Cytokinin membrane receptors modulate transcript accumulation of plastid encoded genes, Russ. J. Plant Physiol., 2017, vol. 64, pp. 301–309.CrossRefGoogle Scholar
  23. 23.
    Cortleven, A., Nitschke, S., Klaumünzer, M., Abdelgawad, H., Asard, H., Grimm, B., Riefler, M., and Schmülling, T., A novel protective function for cytokinin in the light stress response is mediated by the Arabidopsis histidine kinase2 and Arabidopsis histidine kinase3 receptors, Plant Physiol., 2014, vol. 164, pp. 1470–1483.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Caldana, C., Degenkolbe, T., Cuadros-Inostroza, A., Klie, S., Sulpice, R., Leisse, A., Steinhauser, D., Fernie, A.R., Willmitzer, L., and Hannah, M.A., High-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to eight environmental conditions, Plant J., 2011, vol. 67, pp. 869–884.CrossRefPubMedGoogle Scholar
  25. 25.
    Cramer, G.R., Urano, K., Delrot, S., Pezzotti, M., and Shinozaki, K., Effects of abiotic stress on plants: a systems biology perspective, BMC Plant Biol., 2011, vol. 11: 163. doi 10.1186/1471-2229-11-163CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sweere, U., Eichenberg, K., Mira-Rodado, V., Baurle, I., Kudla, J., Nagy, F., Schafer, E., and Harter, K., Interaction of the response regulator ARR4 with phytochrome B in modulating red light signaling, Science, 2001, vol. 294, pp. 1108–1111.CrossRefPubMedGoogle Scholar
  27. 27.
    Kusnetsov, V., Landsberger, M., Meuer, J., and Oelmüller, R., The assembly of the CAAT-box binding complex at a photosynthesis gene promoter is regulated by light, cytokinin, and the stage of the plastids, J. Biol. Chem., 1999, vol. 274, pp. 36 009–36 014.CrossRefGoogle Scholar
  28. 28.
    Smirnova, O.G., Stepanenko, I.L., and Shumnyi, V.K., Mechanism of action and activity regulation of COP1, a constitutive repressor of photomorphogenesis, Russ. J. Plant Physiol., 2012, vol. 59, pp. 155–166.CrossRefGoogle Scholar
  29. 29.
    Vandenbussche, F., Habricot, Y., Condiff, A.S., Maldiney, R., van der Straeten, D., and Ahmad, M., HY5 is a point of convergence between cryptochrome and cytokinin signaling pathways in Arabidopsis thaliana, Plant J., 2007, vol. 49, pp. 428–441.CrossRefPubMedGoogle Scholar
  30. 30.
    Romanov, G.A., How do cytokinins affect the cell? Russ. J. Plant Physiol., 2009, vol. 56, pp. 268–290.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. N. Danilova
    • 1
  • A. S. Doroshenko
    • 1
  • N. V. Kudryakova
    • 1
  • A. A. Andreeva
    • 1
    • 2
  • V. V. Kusnetsov
    • 1
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations