Russian Journal of Plant Physiology

, Volume 65, Issue 4, pp 524–531 | Cite as

Temperature Responses of Photosynthesis and Respiration of Maize (Zea mays) Plants to Experimental Warming

  • Y. P. Zheng
  • R. Q. Li
  • L. L. Guo
  • L. H. Hao
  • H. R. Zhou
  • F. Li
  • Z. P. Peng
  • D. J. Cheng
  • M. XuEmail author
Research Papers


Understanding the key processes and mechanisms of photosynthetic and respiratory acclimation of maize (Zea mays L.) plants in response to experimental warming may further shed lights on the changes in the carbon exchange and Net Primary Production (NPP) of agricultural ecosystem in a warmer climate regime. In the current study, we examined the temperature responses and sensitivity of foliar photosynthesis and respiration for exploring the mechanisms of thermal acclimation associated with physiological and biochemical processes in the North China Plain (NCP) with a field manipulative warming experiment. We found that thermal acclimation of An as evidenced by the upward shift of An-T was determined by the maximum velocity of Rubisco carboxylation (Vcmax), the maximum rate of electron transport (Jmax), and the stomatal- regulated CO2 diffusion process (gs), while the balance between respiration and photosynthesis (Rd/Ag), and/or regeneration of RuBP and the Rubisco carboxylation (Jmax/Vcmax) barely affected the thermal acclimation of An. We also found that the temperature response and sensitivity of Rd was closely associated with the changes in foliar N concentration induced by warming. These results suggest that the leaf-level thermal acclimation of photosynthesis and respiration may mitigate or even offset the negative impacts on maize from future climate warming, which should be considered to improve the accuracy of process-based ecosystem models under future climate warming.


Zea mays global warming physiological adaptation maize North China Plain 



North China Plain


total nonstructural carbohydrates


vapor pressure deficit


water use efficiency


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ruelland, E. and Zachowski, A., How plants sense temperature, Environ. Exp. Bot., 2010, vol. 69, pp. 225–232.CrossRefGoogle Scholar
  2. 2.
    Rodríguez, V.M., Soengas, P., Alonso-Villaverde, V., Sotelo, T., Cartea, M.E., and Velasco, P., Effect of temperature stress on the early vegetative development of Brassica oleracea L., BMC Plant Biol., 2015, vol. 15:145.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Van Mantgem, P.J., Stephenson, N.L., Byrne, J.C., Daniels, L.D., Franklin, J.F., Fulé, P.Z., Harmon, M.E., Larson, A.J., Smith, J, M., Taylor, A.H., and Veblen, T.T., Widespread increase of tree mortality rates in the western United States, Science, 2009, vol. 323, pp. 521–524.CrossRefPubMedGoogle Scholar
  4. 4.
    Jin, B., Wang, L., Wang, J., Jiang, K., Wang, Y., Jiang, X., Ni, C., Wang, Y., and Teng, N., The effect of artificial warming on leaf functional traits, leaf structure and leaf biochemistry in Arabidopsis thaliana, BMC Plant Biol., 2011, vol. 11:35.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zheng, Y.P., Xu, M., Hou, R., Shen, R., Qiu, S., and Ouyang, Z., Effects of experimental warming on stomatal traits in leaves of maize (Zea mays L.), Ecol. Evol., 2013, vol. 3, pp. 3095–3111.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Malcolm, J.R., Liu, C., Neilson, R.P., Hansen, L., and Hannah, L., Global warming and extinctions of endemic species from biodiversity hotspots, Conserv. Biol., 2006, vol. 20, pp. 538–548.CrossRefPubMedGoogle Scholar
  7. 7.
    Colwell, R.K., Brehm, G., Cardelús, C.L., Gilman, A.C., and Longino, J.T., Global warming, elevational range shifts and lowland biotic attrition in the wet tropics, Science, 2008, vol. 322, pp. 258–261.CrossRefPubMedGoogle Scholar
  8. 8.
    Tacarindua, C.R.P., Shiraiwa, T., Homma, K., Kumagai, E., and Sameshima, R., The effects of increased temperature on crop growth and yield of soybean grown in a temperature gradient chamber, Field Crops Res., 2013, vol. 154, pp. 74–81.CrossRefGoogle Scholar
  9. 9.
    Niu, S., Li, Z., Xia, J., Han, Y., Wu, M., and Wan, S., Climate warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China, Environ. Exp. Bot., 2008, vol. 63, pp. 91–101.CrossRefGoogle Scholar
  10. 10.
    Wang, J.Q., Liu, X.Y., Zhang, X.H., Smith, P., Li, L.Q., Filley, T.R., Cheng, K., Shen, M.X., He, Y.B., and Pan, G.X., Size and variability of crop productivity both impacted by CO2 enrichment and warming—a case study of 4 year field experiment in a Chinese paddy, Agric. Ecosyst. Environ., 2016, vol. 221, pp. 40–49.CrossRefGoogle Scholar
  11. 11.
    Llorens, L., Peñuelas, J., Estiarte, M., and Bruna, P., Contrasting growth changes in two dominant species of a Mediterranean shrubland submitted to experimental drought and warming, Ann. Bot., 2004, vol. 94, pp. 843–853.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yin, H., Liu, Q., and Lai, T., Warming effects on growth and physiology in the seedlings of the two conifers Picea asperata and Abies faxoniana under two contrasting light conditions, Ecol. Res., 2008, vol. 23, pp. 459–469.CrossRefGoogle Scholar
  13. 13.
    Zhao, C. and Liu, Q., Growth and physiological responses of Picea asperata seedlings to elevated temperature and to nitrogen fertilization, Acta Physiol. Plant., 2009, vol. 31, pp. 163–173.CrossRefGoogle Scholar
  14. 14.
    Prieto, P., Peñuelas, J., Llusià, J., Asensio, D., and Estiarte, M., Effects of experimental warming and drought on biomass accumulation in a Mediterranean shrubland, Plant Ecol., 2009, vol. 205, pp. 179–191.CrossRefGoogle Scholar
  15. 15.
    Lin, C.J., Li, C.Y., and Lin, S.K., Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.), J. Agric. Food Chem., 2010, vol. 58, pp. 10545–10552.CrossRefPubMedGoogle Scholar
  16. 16.
    Battaglia, M., Beadle, C., and Loughhead, S., Photosynthetic temperature responses of Eucalyptus globulus and Eucalyptus nitens, Tree Physiol., 1996, vol. 16, pp. 81–89.CrossRefPubMedGoogle Scholar
  17. 17.
    Cunningham, S.C. and Readm, J., Comparison of temperate and tropical rainforest tree species: photosynthetic responses to growth temperature, Oecologia, 2002, vol. 133, pp. 112–119.CrossRefPubMedGoogle Scholar
  18. 18.
    Davidson, E.A., Janssens, I.A., and Luo, Y., On the variability of respiration in terrestrial ecosystems: moving beyond Q10, Glob. Chang. Biol., 2006, vol. 12, pp. 154–164.CrossRefGoogle Scholar
  19. 19.
    Atkin, O.K. and Tjoelker, M.G., Thermal acclimation and the dynamic response of plant respiration to temperature, Trends Plant Sci., 2003, vol. 8, pp. 343–351.CrossRefPubMedGoogle Scholar
  20. 20.
    Yamori, W., Hikosaka, K., and Way, D.A., Temperature response of photosynthesis in C3, C4 and CAM plants: temperature acclimation and temperature adaptation, Photosynth. Res., 2014, vol. 119, pp. 101–117.CrossRefPubMedGoogle Scholar
  21. 21.
    Higuchi, H., Sakuratani, T., and Utsunomiya, N., Photosynthesis, leaf morphology and shoot growth as affected by temperatures in cherimoya (Annona cherimola Mill.) trees, Sci. Hortic., 1999, vol. 80, pp. 91–104.CrossRefGoogle Scholar
  22. 22.
    Niinemets, U., Dcaz-Espejo, A., Flexas, J., Galmcbs, J., and Warren, C.R., Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field, J. Exp. Bot., 2009, vol. 60, pp. 2249–2270.CrossRefPubMedGoogle Scholar
  23. 23.
    Xu, C.Y., Salih, A., Ghannoum, O., and Tissue, D.T., Leaf structural characteristics are less important than leaf chemical properties in determining the response of leaf mass per area and photosynthesis of Eucalyptus saligna to industrial-age changes in [CO2] and temperature, J. Exp. Bot., 2012, vol. 63, pp. 5829–5841.CrossRefPubMedGoogle Scholar
  24. 24.
    Chi, Y., Xu, M., Shen, R., Yang, Q., Huang, B., and Wan, S., Acclimation of foliar respiration and photosynthesis in response to experimental warming in a temperate steppe in northern China, PLoS One, 2013, vol. 8: e56482. doi 10.1371/journal.pone.0056482CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Armstrong, A.F., Logan, D.C., and Atkin, O.K., On the developmental dependence of leaf respiration: responses to short-and long-term changes in growth temperature, Am. J. Bot., 2006, vol. 93, pp. 1633–1639.CrossRefPubMedGoogle Scholar
  26. 26.
    Hidayati, N., Triadiati, and Anas, I., Photosynthesis and transpiration rates of rice cultivated under the system of rice intensification and the effects on growth and yield, HAYATI J. Biosci., 2016, vol. 23, pp. 67–72.CrossRefGoogle Scholar
  27. 27.
    Gabaldón-Leal, C., Webber, H., Otegui, M.E., Slafer, G.A., Ordóñez, R.A., Gaiser, T., Lorite, I.J., Ruiz-Ramos, M., and Ewert, F., Modelling the impact of heat stress on maize yield formation, Field Crops Res., 2016, vol. 198, pp. 226–237.CrossRefGoogle Scholar
  28. 28.
    Liu, H., Li, X.B., Fischer, G., and Sun, L.X., Modeling the impacts of climate change on China’s agriculture, J. Geogr. Sci., 2001, vol. 11, pp. 149–160.CrossRefGoogle Scholar
  29. 29.
    Li, X., Takahashi, T., Suzuki, N., and Kaiser, H.M., The impact of climate change on maize yields in the United States and China, Agric. Syst., 2011, vol. 104, pp. 348–353.CrossRefGoogle Scholar
  30. 30.
    Ruiz-Vera, U., Matthew, H.S., Daviaw, D., Donaldr, O., and Carl, J.B., Canopy warming caused photosynthetic acclimation and reduced seed yield in maize grown at ambient and elevated [CO2], Glob. Chang. Biol., 2015, vol. 21, pp. 4237–4249.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Y. P. Zheng
    • 1
    • 2
  • R. Q. Li
    • 1
  • L. L. Guo
    • 2
  • L. H. Hao
    • 2
  • H. R. Zhou
    • 3
  • F. Li
    • 2
  • Z. P. Peng
    • 4
  • D. J. Cheng
    • 2
  • M. Xu
    • 1
    • 5
    • 6
    Email author
  1. 1.Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
  2. 2.School of Water Conservancy and HydropowerHebei University of EngineeringHandanChina
  3. 3.Department of BiologyUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.School of Resources and Environment ScienceHebei Agricultural UniversityBaodingChina
  5. 5.Center for Remote Sensing and Spatial Analysis, Department of Ecology, Evolution and Natural ResourcesRutgers UniversityNew BrunswickUSA
  6. 6.School of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations