Advertisement

Russian Journal of Plant Physiology

, Volume 65, Issue 4, pp 490–497 | Cite as

Substrate Specificity of Acyl-Lipid Δ9-Desaturase from Cyanobacterium sp. IPPAS B-1200, a Cyanobacterium with Unique Fatty Acid Composition

  • A. Yu. Starikov
  • A. A. Usserbaeva
  • K. S. Mironov
  • R. A. Sidorov
  • B. K. Zayadan
  • V. S. Bedbenov
  • M. A. Sinetova
  • D. A. Los
Research Papers
  • 14 Downloads

Abstract

Cyanobacterium sp. IPPAS B-1200 is characterized by a high content of rare fatty acids (FAs), both myristic (14:0–30%) and myristoleic (14:1Δ9–10%) in the membrane lipids. Thus, short-chain FAs reach 40% of the sum of all FAs in cells, which is unusual for Cyanobacteria. Monounsaturated palmitoleic acids (16:1Δ9) also reach 40% of the sum of the FAs. We determined the complete nucleotide sequence of the genome of this cyanobacterium and found the only gene for the acyl-lipid Δ9-desaturase, desC1. We cloned this gene and characterized its specificity to the length of the substrate using heterologous expression in Escheriсhia coli. The results show that DesC1 nonspecifically generates olefin bond in FAs with a length of 14, 16, and 18 carbon atoms. This finding confirms that all monoesterifed FAs in Cyanobacterium sp. IPPAS B-1200 are generated by one acyl-lipid Δ9-desaturase.

Keywords

Cyanobacterium genome desaturase fatty acids genes expression 

Abbreviations

FA(s)

fatty acid(s)

GC

gas chromatography

MS

mass spectrometry

PAGE

polyacrylamide gel electrophoresis

PCR

polymerase chain reaction

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Georgianna, D.R. and Mayfield, S.P., Exploiting diversity and synthetic biology for the production of algal biofuels, Nature, 2012, vol. 488, pp. 329–335.CrossRefPubMedGoogle Scholar
  2. 2.
    Sarsekeyeva, F., Zayadan, B.K., Usserbaeva, A., Bedbenov, V.S., Sinetova, M.A., and Los, D.A., Cyanofuels—biofuels from cyanobacteria: reality and perspectives, Photosynth. Res., 2015, vol. 125, pp. 329–340.CrossRefPubMedGoogle Scholar
  3. 3.
    Sarsekeyeva, F.K., Usserbaeva, A.A., Zayadan, B.K., Mironov, K.S., Sidorov, R.A., Kozlova, A.Yu., Kupriyanova, E.V., Sinetova, M.A., and Los, D.A., Isolation and characterization of a new cyanobacterial strain with a unique fatty acid composition, Adv. Microbiol., 2014, vol. 4, pp. 1033–1043.CrossRefGoogle Scholar
  4. 4.
    Sinetova, M.A., Bolatkhan, K., Sidorov, R.A., Mironov, K.S., Skrypnik, A.N., Kupriyanova, E.V., Bolatkhan, K.Z., Shumskaya, M., and Los, D.A., Polyphasic characterization of the thermotolerant cyanobacterium Desertifilum sp. strain IPPAS B-1220, FEMS Microbiol. Lett., 2017, vol. 364. doi 10.1093/femsle/fnx027Google Scholar
  5. 5.
    Polashock, J.J., Chin, C.K., and Martin, C.E., Expression of the yeast Δ-9 fatty acid desaturase in Nicotiana tabacum, Plant Physiol., 1992, vol. 100, pp. 894–901.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Orlova, I.V., Serebriiskaya, T.S., Popov, V., Merkulova, N., Nosov, A.M., Trunova, T.I., Tsydendambaev, V.D., and Los, D.A., Transformation of tobacco with a gene for the thermophilic acyl–lipid desaturase enhances the chilling tolerance of plants, Plant Cell Physiol., 2003, vol. 44, pp. 447–450.CrossRefPubMedGoogle Scholar
  7. 7.
    Liu, X., Sheng, J., and Curtiss, R., III, Fatty acid production in genetically modified cyanobacteria, Proc. Natl. Acad. Sci. USA, 2011, vol. 108, pp. 6899–6904.CrossRefPubMedGoogle Scholar
  8. 8.
    Choi, Y.J. and Lee, S.Y., Microbial production of short-chain alkanes, Nature, 2013, vol. 502, pp. 571–574.CrossRefPubMedGoogle Scholar
  9. 9.
    Los, D.A., Fatty Acid Desaturases, Moscow: Scientific World, 2014.Google Scholar
  10. 10.
    Amiri, R.M., Yur’eva, N.O., Shimshilashvili, K.R., Goldenkova-Pavlova, I.V., Pchelkin, V.P., Kuznitsova, E.I., Tsydendambaev, V.D., Trunova, T.I., Los, D.A., Jouzani, G.S., and Nosov, A.M., Expression of acyl-lipid Δ12-desaturase gene in prokaryotic and eukaryotic cells and its effect on cold stress tolerance of potato, J. Integr. Plant Biol., 2010, vol. 52, pp. 289–297.CrossRefPubMedGoogle Scholar
  11. 11.
    Los, D.A. and Mironov, K.S., Modes of fatty acid desaturation in cyanobacteria: an update, Life, 2015, vol. 5, pp. 554–567.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Starikov, A.Y., Usserbaeva, A.A., Sinetova, M.A., Sarsekeyeva, F.K., Zayadan, B.K., Ustinova, V., Kupriyanova, E.V., Los, D.A., and Mironov, K.S., Draft genome sequence of Cyanobacterium sp. strain IPPAS B-1200 with a unique fatty acid composition, Genome Announc., 2016, vol. 4: e01306–16. doi 10.1128/genomeA.01306-16CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pereira, F.L., Soares, S.C., Dorella, F.A., Leal, C.A., and Figueiredo, H.C., Evaluating the efficacy of the new Ion PGM Hi-Q Sequencing Kit applied to bacterial genomes, Genomics, 2016, vol. 107, pp. 189–198.CrossRefPubMedGoogle Scholar
  14. 14.
    Williams, J.G.K., Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803, Methods Enzymol., 1988, vol. 167, pp. 766–778.CrossRefGoogle Scholar
  15. 15.
    Maniatis, T., Sambrook, J., and Fritsch, E.F., Molecular Cloning: A Laboratory Manual, Cold Springer Harbor: Cold Springer Harbor Lab., 1989.Google Scholar
  16. 16.
    Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V., Vyahhi, N., Tesler, G., Alekseyev, M.A., and Pevzner, P.A., SPAdes: a new crossmark genome assembly algorithm and its applications to single-cell sequencing, J. Comput. Biol., 2012, vol. 19, pp. 455–477.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 2004, vol. 32, pp. 1792–1797.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    McWilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y.M., Buso, N., Cowley, A.P., and Lopez, R., Analysis tool web services from the EMBL-EBI, Nucleic Acids Res., 2013, vol. 41: W597–600. doi 10.1093/nar/gkt376CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Li, H. and Homer, N., A survey of sequence alignment algorithms for next-generation sequencing, Brief Bioinform., 2010, vol. 11, pp. 473–483.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, pp. 680–685.CrossRefPubMedGoogle Scholar
  21. 21.
    Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G., QUAST: quality assessment tool for genome assemblies, Bioinformatics, 2013, vol. 29, pp. 1072–1075.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wada, H., Avelange-Macherel, M.H., and Murata, N., The desA gene of the cyanobacterium Synechocystis sp. strain PCC6803 is the structural gene for delta 12 desaturase, J. Bacteriol., 1993, vol. 175, pp. 6056–6058.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sakamoto, T., Los, D.A., Higashi, S., Wada, H., Nishida, I., Ohmori, M., and Murata, N., Cloning of Δ3 desaturase from cyanobacteria and its use in altering the degree of membrane-lipid unsaturation, Plant Mol. Biol., 1994, vol. 26, pp. 249–263.CrossRefPubMedGoogle Scholar
  24. 24.
    Tasaka, Y., Gombos, Z., Nishiyama, Y., Mohanty, P., Ohba, T., Ohki, K., and Murata, N., Targeted mutagenesis of acyl-lipid desaturases in Synechocystis: evidence for the important roles of polyunsaturated membrane lipids in growth, respiration and photosynthesis, EMBO J., 1996, vol. 15, pp. 6416–6425.PubMedGoogle Scholar
  25. 25.
    Chintalapati, S., Prakash, S., Gupta, P., Ohtani, S., Suzuki, I., Sakamoto, T., Murata, N., and Shivaji, S., A novel Δ9 acyl-lipid desaturase, DesC2, from cyanobacteria acts on fatty acids esterified to the sn-2 position of glycerolipids, Biochem. J., 2006, vol. 398, pp. 207–214. doi 10.1042/BJ20060039CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Shih, P.M., Wu, D., Latifi, A., Axen, S.D., Fewer, D.P., Talla, E., Calteau, A., Cai, F., Tandeau de Marsac, N., Rippka, R., Herdman, M., Sivonen, K., Coursin, T., Laurent, T., Goodwin, L., et al., Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing, Proc. Natl. Acad. Sci. USA, 2013, vol. 110, pp. 1053–1058.CrossRefPubMedGoogle Scholar
  27. 27.
    Panpoom, S., Los, D.A., and Murata, N., Biochemical characterization of a Δ12 acyl-lipid desaturase after overexpression of the enzyme in Escherichia coli, Biochim. Biophys. Acta, 1996, vol. 1390. pp. 323–332.CrossRefGoogle Scholar
  28. 28.
    Raetz, C.R., Enzymology, genetics, and regulation of membrane phospholipid synthesis in Escherichia coli, Microbiol. Rev., 1978, vol. 42, pp. 614–659.PubMedGoogle Scholar
  29. 29.
    Feng, Y. and Cronan, J.E., Escherichia coli unsaturated fatty acid synthesis complex transcription of the fabA gene and in vivo identification of the essential reaction catalyzed by FabB, J. Biol. Chem., 2009, vol. 284, pp. 29526–29535.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Starikov, A.Yu., Userbaeva, A.A., Lapina, S.S., Mironov, K.S., Maslova, I.P., Pchelkin, V.P., Zayadan, B.K., Sinetova, M.A., and Los, D.A., Substrate specificity of acyl-lipid Δ9-desaturase from Prochlorothrix hollandica cyanobacterium producing myristoleic acid, Russ. J. Plant Phys., 2017, vol. 64, pp. 560–565.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. Yu. Starikov
    • 1
  • A. A. Usserbaeva
    • 2
  • K. S. Mironov
    • 1
  • R. A. Sidorov
    • 1
  • B. K. Zayadan
    • 2
  • V. S. Bedbenov
    • 1
  • M. A. Sinetova
    • 1
  • D. A. Los
    • 1
  1. 1.Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of Biology and BiotechnologyAl-Farabi State University of KazakhstanAlmatyKazakhstan

Personalised recommendations