Advertisement

Russian Journal of Plant Physiology

, Volume 65, Issue 4, pp 553–562 | Cite as

Effect of Cadmium on Distribution of Potassium, Calcium, Magnesium, and Oxalate Accumulation in Amaranthus cruentus L. Plants

  • N. G. Osmolovskaya
  • Vu Viet Dung
  • Z. K. Kudryashova
  • L. N. Kuchaeva
  • N. F. Popova
Research Papers
  • 1 Downloads

Abstract

Effect of cadmium at concentrations of 1 and 10 μM on biomass increment, mineral nutrient elements (potassium, calcium, and magnesium) accumulation, and oxalic acid pools in organs of Amaranthus cruentus L. plants growing under water culture conditions was investigated. It was established that cadmium in the tested concentrations did not exert any pronounced damage effect on amaranth plants, which was in part shown to be associated with its predominant accumulation in roots and minimization of its transfer into young leaves. It was demonstrated that, in sublethal concentrations, this metal exerted growth response in the above ground amaranth organs expressed in stimulation of young leaves' growth, while simultaneously inhibiting growth processes in mature leaves. The results obtained are discussed in the context of determination of plant growth response to the effect of cadmium by certain metabolic changes whose functional manifestations consisted in carbon metabolism intensification and increase in water-insoluble oxalate content in amaranth leaves. Simultaneous observed increase in Ca2+ and Mg2+ levels in young and mature amaranth leaves is considered as additional evidence in favor of accelerating leaves' ontogenesis pace under the effect of sublethal doses of cadmium.

Keywords

Amaranthus cruentus cadmium tolerance mature and young leaf potassium calcium magnesium oxalate metabolic response 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Titov, A.F., Kaznina, N.M., and Talanova, V.V., Tyazhelye metally i rasteniya (Heavy Metals and Plants), Petrozavodsk: Karel. Nauch. Tsentr, Ross. Akad. Nauk, 2014.Google Scholar
  2. 2.
    Nazar, R., Iqbal, N., Masood, A., Khan, M.I.R., Syeed, S., and Khan, N.A., Cadmium toxicity in plants and role of mineral nutrients in its alleviation, Am. J. Plant Sci., 2012, vol. 3, pp. 1476–1489.CrossRefGoogle Scholar
  3. 3.
    Metwally, A., Safronova, V.I., Belimov, A.A., and Dietz, K.-J., Genotypic variation of the response to cadmium toxicity in Pisum sativum L., J. Exp. Bot., 2005, vol. 56, pp. 167–178.PubMedGoogle Scholar
  4. 4.
    Liu, C.H., Huang, W.D., and Kao, C.H., The decline in potassium concentration is associated with cadmium toxicity of rice seedlings, Acta Physiol. Plant., 2012, vol. 34, pp. 495–502.CrossRefGoogle Scholar
  5. 5.
    Li, S., Yu, J., Zhu, M., Zhao, F., and Luan, S., Cadmium impairs ion homeostasis by altering K+ and Ca2+ channel activities in rice root hair cells, Plant Cell Environ., 2012, vol. 5, pp. 1998–2013.CrossRefGoogle Scholar
  6. 6.
    Huang, Y.Z., Wei, K., Yang, J., Dai, F., and Zhang, G.P., Interaction of salinity and cadmium stresses on mineral nutrients, sodium, and cadmium accumulation in four barley genotypes, J. Zhejiang Univ., 2007, vol. 8, pp. 476–485.CrossRefGoogle Scholar
  7. 7.
    Gonçalves, J.F., Antes, F.G., Maldaner, J., Pereira, L.B., Tabaldi, L.A., Rauber, R., Rossato, L.V., Bisognin, D.A., Dressler, V.L., de Moraes Flores, E.M., and Nicoloso, F.T., Cadmium and mineral nutrient accumulation in potato plantlets grown under cadmium stress in two different experimental culture conditions, Plant Physiol. Biochem., 2009, vol. 47, pp. 814–821.CrossRefPubMedGoogle Scholar
  8. 8.
    Kupper, H. and Kochian, L.V., Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population), New Phytol., 2010, vol. 185, pp. 114–129.CrossRefPubMedGoogle Scholar
  9. 9.
    Vahedi, A., The absorption and metabolism of heavy metals and mineral matters in the halophyte plant Artemisia aucheri, Int. J. Biol., 2013, vol. 5, pp. 63–70.Google Scholar
  10. 10.
    Jang, X., Baligar, V.C., Martens, D.C., and Clark, R.B., Cadmium effects on influx and transport of mineral nutrients in plant species, J. Plant Nutr., 1996, vol. 19, pp. 643–656.CrossRefGoogle Scholar
  11. 11.
    Pietrini, F., Iori, V., Cheremisina, A., Shevyakova, N.I., Radiukina, N., Kuznetsov, Vl.V., and Zacchini, M., Evaluation of nickel tolerance in Amaranthus paniculatus L. plants by measuring photosynthesis, oxidative status, antioxidative response and metal-binding molecule content, Environ. Sci. Pollut. Res., 2015, vol. 22, pp. 482–494.CrossRefGoogle Scholar
  12. 12.
    Shevyakova, N.I., Cheremisina, A.I., and Kuznetsov, Vl.V., Phytoremediation potential of Amaranthus hybrids: antagonism between nickel and iron and chelating role of polyamines, Russ. J. Plant Physiol., 2011, vol. 58, pp. 634–642.CrossRefGoogle Scholar
  13. 13.
    Fan, H. and Zhou, W., Screening of amaranth cultivars (Amaranthus mangostanus L.) for cadmium hyperaccumulation, Agric. Sci. China, 2009, vol. 8, pp. 342–351.CrossRefGoogle Scholar
  14. 14.
    Bosiacki, M., Kleiber, T., and Kaczmarek, J., Evaluation of suitability of Amaranthus caudatus L. and Ricinus communis L. in phytoextraction of cadmium and lead from contaminated substrates, Arch. Environ. Prot., 2013, vol. 39, pp. 47–59. doi 10.2478/aep-2013-0022Google Scholar
  15. 15.
    Watanabe, T., Murata, Y., and Osaki, M., Amaranthus tricolor has the potential for phytoremediation of cadmium-contaminated soils, Commun. Soil Sci. Plant Anal., 2009, vol. 40, pp. 3158–3169.CrossRefGoogle Scholar
  16. 16.
    Ko, C.H., Chang, F.C., Wang, Y.N., and Chung, C.Y., Extraction of heavy metals from contaminated soil by two Amaranthus spp., Clean—Soil Air Water, 2014, vol. 42, pp. 635–640.CrossRefGoogle Scholar
  17. 17.
    Chetan, A. and Ami, P., Effects of heavy metals (Cu and Cd) on growth of leafy vegetables—Spinacia oleracea and Amaranthus caudatus, Int. Res. J. Environ. Sci., 2015, vol. 4, pp. 63–69.Google Scholar
  18. 18.
    Osmolovskaya, N.G., Kuchaeva, L.N., and Novak, V.A., Role of organic acids in the formation of the ionic composition in developing glycophyte leaves, Russ. J. Plant Physiol., 2007, vol. 54, pp. 336–342.CrossRefGoogle Scholar
  19. 19.
    Seregin, I.V. and Kozhevnikova, A.D., Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium, Russ. J. Plant Physiol., 2008, vol. 55, pp. 1–22.CrossRefGoogle Scholar
  20. 20.
    De La Rosa, G., Martinez-Martinez, A., Pelayo, H., Peralta-Videa, J.R., Sanchez-Salcido, B., and Gardea-Torresday, J.L., Production of low-molecular weight thiols as a response to cadmium uptake by tumbleweed (Salsola kali), Plant Physiol. Biochem., 2005, vol. 43, p. 491–498.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhao, F.J., Jiang, R.F., Dunham, S.J., and McGrath, S.P., Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri, New Phytol., 2006, vol. 172, pp. 646–654.CrossRefPubMedGoogle Scholar
  22. 22.
    De Maria, S., Puschenreiter, M., and Rivelli, A.R., Cadmium accumulation and physiological response of sunflower plants to Cd during the vegetative growing cycle, Plant Soil Environ., 2013, vol. 59, pp. 254–261.CrossRefGoogle Scholar
  23. 23.
    Maksymiec, W., Signalling responses in plants to heavy metal stress, Acta Physiol. Plant., 2007, vol. 29, pp. 177–187.CrossRefGoogle Scholar
  24. 24.
    Cuypers, A., Hendrix, S., Amaral dos Reis, R., de Smet, S., Deckers, J., Gielen, H., Jozefczak, M., Loix, C., Vercampt, H., Vangronsveld, J., and Keunen, E., Hydrogen peroxide, signaling in disguise during metal phytotoxicity, Front. Plant Sci., 2016, vol. 7: 470. doi 10.3389/fpls.2016.00470CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Keunen, E., Schellingen, K., Vangronsveld, J., and Cuypers, A., Ethylene and metal stress: small molecule, big impact, Front. Plant Sci., 2016, vol. 7: 23. doi 10.3389/fpls.2016.00023CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hedrich, R., Ion channels in plants, Physiol. Rev., 2012, vol. 92, pp. 1777–1811.CrossRefPubMedGoogle Scholar
  27. 27.
    Siddiqui, M.H., Al-Whaibi, M.H., Sakran, A.M., Basalah, M.O., and Ali, H.M., Effect of calcium and potassium on antioxidant system of Vicia faba L. under cadmium stress, Int. J. Mol. Sci., 2012, vol. 13, pp. 6604–6619. doi 10.3390/ijms13066604CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lux, A., Martinka, M., Vaculik, M., and White, P.J., Root responses to cadmium in the rhizosphere: a review, J. Exp. Bot., 2011, vol. 62, pp. 21–37.CrossRefPubMedGoogle Scholar
  29. 29.
    Xie, Y., Hu, L., Du, Z., Sun, X., Amombo, E., Fan, J., and Fu, J., Effects of cadmium exposure on growth and metabolic profile of bermudagrass [Cynodon dactylon (L.) Pers.], PLoS One, 2014, vol. 9, no. 12: e115279. doi 10.1371/jounal.pone.0115279CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Keunen, E., Florez-Sarasa, I., Obata, T., Jozefczak, M., Remans, T., Vangronsveld, J., Fernie, A.R., and Cuypers, A., Metabolic responses of Arabidopsis thaliana roots and leaves to sublethal cadmium exposure are differentially influenced by ALTERNATIVE OXIDASE1a, Environ. Exp. Bot., 2016, vol. 124, pp. 64–78.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. G. Osmolovskaya
    • 1
  • Vu Viet Dung
    • 1
  • Z. K. Kudryashova
    • 1
  • L. N. Kuchaeva
    • 1
  • N. F. Popova
    • 1
  1. 1.Department of Plant Physiology and BiochemistrySt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations