Advertisement

Russian Journal of Plant Physiology

, Volume 65, Issue 4, pp 477–489 | Cite as

Nitrate Signaling in Plants: Introduction to the Problem

  • S. F. Izmailov
  • A. V. Nikitin
  • V. A. Rodionov
Reviews

Abstract

The review discusses ecological aspects of nitrate pools in the soil as an evolutionary basis of emergency and manifestation of the nitrate’s signaling function in plants. The historiography and modern state of the problem of signaling are considered in respect to such processes as sensing, consumption, transport, and storage of nitrate as well as regulation of nitrogen, carbon, and secondary metabolisms.

Keywords

plants nitrate signaling nitrate ecology nitrate sensors and transporters nitrogen and carbon metabolism regulation 

Abbreviations

ACI

acid invertase

ALI

alkaline invertase

GS

glutamine synthetase

GTS

glutamate synthase

NIR

nitrite reductase

NR

nitrate reductase

SS

sucrose synthase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Braunshtein, A.E., Protsessy i fermenty kletochnogo metabolizma (Processes and Enzymes of Cellular Metabolism), Moscow: Nauka, 1987.Google Scholar
  2. 2.
    Kretovich, V.L., Usvoenie i metabolizm azota u rastenii (Assimilation and Metabolism of Nitrogen in Plants), Moscow: Nauka, 1987.Google Scholar
  3. 3.
    Miflin, B.J., The location of nitrite reductase and other enzymes related to amino acid biosynthesis in the plastids of root and leaves, Plant Physiol., 1974, vol. 54, pp. 550–555.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Izmailov, S.F., Azotnyi obmen v rasteniyakh (Nitrogen Metabolism in Plants), Moscow: Nauka, 1986.Google Scholar
  5. 5.
    Wang, R., Okamoto, M., Xing, X., and Crawford, N.M., Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism, Plant Physiol., 2003, vol. 132, pp. 556–567.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Canfield, D.E., Glazer, A.N., and Falkowski, P.G., The evolution and future of Earth’s nitrogen cycle, Science, 2010, vol. 330, pp. 192–196.CrossRefPubMedGoogle Scholar
  7. 7.
    Crawford, N.M., Nitrate: nutrient and signal for plant growth, Plant Cell, 1995, vol. 7, pp. 859–868.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hong, B., Swaney, D.P., Woodbury, P.B., and Weinstein, D.A., Long-term nitrate export pattern from Hubbard Brook Watershed 6 driven by climatic variation, Water Air Soil Pollut., 2005, vol. 160, pp. 293–326.CrossRefGoogle Scholar
  9. 9.
    Kielland, K., Olson, K., Ruess, R.W., and Boone, R.D., Contribution of winter processes to soil nitrogen flux in taiga forest ecosystems, Biogeochemistry, 2006, vol. 81, pp. 349–360.CrossRefGoogle Scholar
  10. 10.
    Judd, K.E., Likens, G.E., and Groffman, P.M., High nitrate retention during winter in soils of the Hubbard Brook Experimental Forest, Ecosystems, 2007, vol. 10, pp. 217–225.CrossRefGoogle Scholar
  11. 11.
    Austin, A.T., Yahdjian, L., Stark, J.M., Belnap, J., Porporato, A., Norton, U., Ravetta, D.A., and Schaeffer, S.M., Water pulses and biogeochemical cycles in arid and semiarid ecosystems, Oecology, 2004, vol. 141, pp. 221–235.CrossRefGoogle Scholar
  12. 12.
    Brooks, P.D., Williams, M.W., and Schmidt, S.K., Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt, Biogeochemistry, 1998, vol. 43, pp. 1–15.CrossRefGoogle Scholar
  13. 13.
    Campbell, J.L., Mitchell, M.J., Mayer, B., Groffman, P.M., and Christenson, L.M., Mobility of nitrogen-15-labeled nitrate and sulfur-34-labeled sulfate during snowmelt, Soil Sci. Soc. Am. J., 2007, vol. 71, pp. 1934–1944.CrossRefGoogle Scholar
  14. 14.
    Shrestha, J., Niklaus, P.A., Pasquale, N., Huber, B., Barnard, R.L., Frossard, E., Schleppi, P., Tockner, K., and Luster, J., Flood pulses control soil nitrogen cycling in a dynamic river floodplain, Geoderma, 2014, vol. 228–229, pp. 14–24.CrossRefGoogle Scholar
  15. 15.
    Bustamante, M., Verdejo, V., Zúñiga, C., Espinosa, F., Orlando, J., and Carú, M., Comparison of water availability effect on ammonia-oxidizing bacteria and archaea in microcosms of a Chilean semiarid soil, Front. Microbiol., 2012, vol. 3: 282. doi 10.3389/fmicb.2012.00282CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fuchslueger, L., Kastl, E.-M., Bauer, F., Kienzl, S., Hasibeder, R., Ladreiter-Knauss, T., Schmitt, M., Bahn, M., Schloter, M., Richter, A., and Szukics, U., Effects of drought on nitrogen turnover and abundances of ammonia-oxidizers in mountain grassland, Biogeoscience, 2014, vol. 11, pp. 6003–6015.CrossRefGoogle Scholar
  17. 17.
    Peralta, A.L., Ludmer, S., and Kent, A.D., Hydrologic history influences microbial community composition and nitrogen cycling under experimental drying/wetting treatments, Soil Biol. Biochem., 2013, vol. 66, pp. 29–37.CrossRefGoogle Scholar
  18. 18.
    Gubry-Rangin, C., Novotnik, B., Mandic-Mulec, I., Nicol, G.W., and Prosser, J.I., Temperature responses of soil ammonia-oxidising archaea depend on pH, Soil Biol. Biochem., 2017, vol. 106, pp. 61–68.CrossRefGoogle Scholar
  19. 19.
    Di, H.J., Cameron, K.C., Podolyan, A., and Robinson, A., Effect of soil moisture status and a nitrification inhibitor, dicyandiamide, on ammonia oxidizer and denitrifier growth and nitrous oxide emissions in a grassland soil, Soil Biol. Biochem., 2014, vol. 73, pp. 59–68.CrossRefGoogle Scholar
  20. 20.
    Stephan, K., Kavanagh, K.L., and Koyama, A., Effects of spring prescribed burning and wildfires on watershed nitrogen dynamics of central Idaho headwater areas, For. Ecol. Manage., 2012, vol. 263, pp. 240–252.CrossRefGoogle Scholar
  21. 21.
    Rhoades, Ch.C., McCutchan, J.H., Cooper, L.A., Clow, D., Detmer, Th.M., Briggs, J.S., Stednick, J.D., Veblen, Th.T., Ertz, R.M., Likens, G.E., and Lewis, W.M., Biogeochemistry of beetle-killed forests: explaining a weak nitrate response, Proc. Natl. Acad. Sci. USA, 2013, vol. 110, pp. 1756–1760.CrossRefPubMedGoogle Scholar
  22. 22.
    Norton, U., Ewers, B.E., Borkhuu, B., Brown, N.R., and Pendall, E., Soil nitrogen five years after bark beetle infestation in lodgepole pine forests, Soil Sci. Soc. Am. J., 2015, vol. 79, pp. 282–293.CrossRefGoogle Scholar
  23. 23.
    Subbarao, G.V., Yoshihashi, T., Worthington, M., Nakahara, K., Ando, Y., Sahrawat, K.L., Rao, I.M., Lata, J.-Ch., Kishii, M., and Braun, H.-J., Suppression of soil nitrification by plants, Plant Sci., 2015, vol. 233, pp. 155–164.CrossRefPubMedGoogle Scholar
  24. 24.
    Alboresi, A., Gestin, C., Leydecker, M.-T., Bedu, M., Meyer, C., and Truong, H.-N., Nitrate, a signal relieving seed dormancy in Arabidopsis, Plant Cell Environ., 2005, vol. 28, pp. 500–512.CrossRefPubMedGoogle Scholar
  25. 25.
    Krouk, G., Lacombe, B., Bielach, A., Perrine-Walker, F., Malinska, K., Mounier, E., Hoyerova, K., Tillard, P., Leon, S., Ljung, K., Zazimalova, E., Benkova, E., Nacry, P., and Gojon, A., Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants, Dev. Cell, 2010, vol. 18, pp. 927–937.CrossRefPubMedGoogle Scholar
  26. 26.
    Butz, R.G. and Jackson, W.A., A mechanism for nitrate transport and reduction, Phytochemistry, 1977, vol. 16, pp. 409–417.CrossRefGoogle Scholar
  27. 27.
    Sasaki, T., Mori, I.C., Furuichi, T., Munemasa, Sh., Toyooka, K., Matsuoka, K., Murata, Y., and Yamamoto, Y., Closing plant stomata requires a homolog of an aluminum-activated malate transporter, Plant Cell Physiol., 2010, vol. 51, pp. 354–365.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wang, Y.Y., Hsu, P.K., and Tsay, Y.F., Uptake, allocation and signaling of nitrate, Trends Plant Sci., 2012, vol. 17, pp. 458–467.CrossRefPubMedGoogle Scholar
  29. 29.
    Guo, F.Q., Wang, R., Chen, M., and Crawford, N.M., The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) is activated and functions in nascent organ development during vegetative and reproductive growth, Plant Cell, 2001, vol. 13, pp. 1761–1777.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Vidal, E.A., Álvarez, J.M., and Gutiérrez, R.A., Nitrate regulation of AFB3 and NAC4 gene expression in Arabidopsis roots depends on NRT1.1 nitrate transport function, Plant Signal. Behav., 2014, vol. 9: e28501.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tsay, Y.F., Schroeder, J.I., Feldmann, K.A., and Crawford, N.M., The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter, Cell, 1993, vol. 72, pp. 705–713.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Liu, K.H., Huang, C.Y., and Tsay, Y.F., CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake, Plant Cell, 1999, vol. 11, pp. 865–874.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gojon, A., Krouk, G., Perrine-Walker, F., and Laugier, E., Nitrate transceptor(s) in plants, J. Exp. Bot., 2011, vol. 62, pp. 2299–2308.CrossRefPubMedGoogle Scholar
  34. 34.
    Guo, F.Q., Wang, R., and Crawford, N.M., The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) is regulated by auxin in both shoots and roots, J. Exp. Bot., 2002, vol. 53, pp. 835–844.CrossRefPubMedGoogle Scholar
  35. 35.
    Walch-Liu, P. and Forde, B.G., Nitrate signalling mediated by the NRT1.1 nitrate transporter antagonises L-glutamate-induced changes in root architecture, Plant J., 2008, vol. 54, pp. 820–828.CrossRefPubMedGoogle Scholar
  36. 36.
    Ho, C.H., Lin, S.H., Hu, H.C., and Tsay, Y.F., CHL1 functions as a nitrate sensor in plants, Cell, 2009, vol. 138, pp. 1184–1194.CrossRefPubMedGoogle Scholar
  37. 37.
    Riveras, E., Alvarez, J.M., Vidal, E.A., Oses, C., Vega, A., and Gutiérrez, R.A., The calcium ion is a second messenger in the nitrate signaling pathway of Arabidopsis, Plant Physiol., 2015, vol. 169, pp. 1397–1404.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Guo, F.Q., Young, J., and Crawford, N.M., The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis, Plant Cell, 2003, vol. 15, pp. 107–117.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Little, D.Y., Rao, H., Oliva, S., Daniel-Vedele, F., Krapp, A., and Malamy, J.E., The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 13693–13698.CrossRefPubMedGoogle Scholar
  40. 40.
    Orsel, M., Chopin, F., Leleu, O., Smith, S.J., Krapp, A., Daniel-Vedele, F., and Miller, A.J., Nitrate signaling and the two component high affinity uptake system in Arabidopsis, Plant Signal. Behav., 2007, vol. 2, pp. 260–262.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Huang, N.C., Liu, K.H., Lo, H.J., and Tsay, Y.F., Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake, Plant Cell, 1999, vol. 11, pp. 1381–1392.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Li, W., Wang, Y., Okamoto, M., Crawford, N.M., Siddiqi, M.Y., and Glass, A.D., Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster, Plant Physiol., 2007, vol. 143, pp. 425–433.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Pellizzaro, A., Clochard, T., Cukier, C., Bourdin, C., Juchaux, M., Montrichard, F., Thany, S., Raymond, V., Planchet, E., Limami, A.M., and Morère-Le Paven, M.C., The nitrate transporter MtNPF6.8 (MtNRT1.3) transports abscisic acid and mediates nitrate regulation of primary root growth in Medicago truncatula, Plant Physiol., 2014, vol. 166, pp. 2152–2165.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kiba, T., Feria-Bourrellier, A.-B., Lafouge, F., Lezhneva, L., Boutet-Mercey, S., Orsel, M., Brehaut, V., Miller, A., Daniel-Vedele, F., Sakakibara, H., and Krapp, A., The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogenstarved plants, Plant Cell, 2012, vol. 24, pp. 245–258.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Li, J.Y., Fu, Y.L., Pike, S.M., Bao, J., Tian, W., Zhang, Y., Chen, C.Z., Zhang, Y., Li, H.M., Huang, J., Li, L.G., Schroeder, J.I., Gassmann, W., and Gong, J.M., The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance, Plant Cell, 2010, vol. 22, pp. 1633–1646.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Zhang, G.B., Yi, H.Y., and Gong, J.M., The Arabidopsis ethylene/jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation, Plant Cell, 2014, vol. 26, pp. 3984–3998.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lin, S.H., Kuo, H.F., Canivenc, G., Lin, C.S., Lepetit, M., Hsu, P.K., Tillard, P., Lin, H.L., Wang, Y.Y., Tsai, C.B., Gojon, A., and Tsay, Y.F., Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport, Plant Cell, 2008, vol. 20, pp. 2514–2528.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Chiu, Ch.Ch., Lin, Ch.S., Hsia, A.P., Su, R.Ch., Lin, H.I., and Tsay, Y.F., Mutation of a nitrate transporter, AtNRT1.4, results in a reduced petiole nitrate content and altered leaf development, Plant Cell Physiol., 2004, vol. 45, pp. 1139–1148.CrossRefPubMedGoogle Scholar
  49. 49.
    Chopin, F., Orsel, M., Dorbe, M.F., Chardon, F., Truong, H.N., Miller, A.J., Krapp, A., and Daniel-Vedele, F., The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds, Plant Cell, 2007, vol. 19, pp. 1590–1602.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    De Angeli, A., Monachello, D., Ephritikhine, G., Frachisse, J.M., Thomine, S., Gambale, F., and Barbier-Brygoo, H., The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles, Nature, 2006, vol. 442, pp. 939–942.CrossRefPubMedGoogle Scholar
  51. 51.
    Von der Fecht-Bartenbach, J., Bogner, M., Dynowski, M., and Ludewig, U., CLC-b-mediated NO3–/H+ exchange across the tonoplast of Arabidopsis vacuoles, Plant Cell Physiol., 2010, vol. 51, pp. 960–968.CrossRefPubMedGoogle Scholar
  52. 52.
    He, Y.N., Peng, J.S., Cai, Y., Liu, D.F., Guan, Y., Yi, H.Y., and Gong, J.M., Tonoplast-localized nitrate uptake transporters involved in vacuolar nitrate efflux and reallocation in Arabidopsis, Sci. Rep., 2017, vol. 7: 6417. doi 10.1038/s41598-017-06744-5CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Fan, Sh.Ch., Lin, Ch.S., Hsu, P.K., Lin, Sh.H., and Tsay, Y.F., The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate, Plant Cell, 2009, vol. 21, pp. 2750–2761.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Lezhneva, L., Kiba, T., Feria-Bourrellier, A.-B., Lafouge, F., Boutet-Mercey, S., Zoufan, P., Sakakibara, H., Daniel-Vedele, F., and Krapp, A., The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogenstarved plants, Plant J., 2014, vol. 80, pp. 230–241.CrossRefPubMedGoogle Scholar
  55. 55.
    Hsu, P.K. and Tsay, Y.F., Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth, Plant Physiol., 2013, vol. 163, pp. 844–856.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Almagro, A., Lin, S.H., and Tsay, Y.F., Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development, Plant Cell, 2008, vol. 20, pp. 3289–3299.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Geiger, D., Maierhofer, T., Al-Rasheid, Kh.A.S., Scherzer, S., Mumm, P., Liese, A., Ache, P., Wellmann, Ch., Marten, I., Grill, E., Romeis, T., and Hedrich, R., Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1, Sci. Signal., 2011, vol. 4, no. 173: ra32. doi 10.1126/scisignal.2001346CrossRefPubMedGoogle Scholar
  58. 58.
    Gutermuth, T., Lassig, R., Portes, M.T., Maierhofer, T., Romeis, T., Borst, J.W., Hedrich, R., Feijó, J.A., and Konrad, K.R., Pollen tube growth regulation by free anions depends on the interaction between the anion channel SLAH3 and calcium-dependent protein kinases CPK2 and CPK20, Plant Cell, 2013, vol. 25, pp. 4525–4543.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Zheng, X., He, K., Kleist, T., Chen, F., and Luan, Sh., Anion channel SLAH3 functions in nitrate-dependent alleviation of ammonium toxicity in Arabidopsis, Plant Cell Environ., 2015, vol. 38, pp. 474–486.CrossRefPubMedGoogle Scholar
  60. 60.
    Maierhofer, T., Lind, Ch., Hüttl, S., Scherzer, S., Papenfuβ, M., Simon, J., Al-Rasheid, Kh.A.S., Ache, P., Rennenberg, H., Hedrich, R., Müller, T.D., and Geiger, D., A single-pore residue renders the Arabidopsis root anion channel SLAH2 highly nitrate selective, Plant Cell, 2014, vol. 26, pp. 2554–2567.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Tang, P.S. and Wu, H.Y., Adaptive formation of nitrate reductase in rice seedlings, Nature, 1957, vol. 179, pp. 1355–1356.CrossRefGoogle Scholar
  62. 62.
    Hewitt, E.J. and Afridi, M., Adaptive synthesis of nitrate reductase in higher plants, Nature, 1959, vol. 183, pp. 57–58.CrossRefGoogle Scholar
  63. 63.
    Zielke, H.R. and Filner, P., Synthesis and turnover of nitrate reductase induced by nitrate in cultured tobacco cells, J. Biol. Chem., 1971, vol. 246, pp. 1772–1779.PubMedGoogle Scholar
  64. 64.
    Somers, D.A., Kuo, Ts.M., Kleinhofs, A., Warner, R.L., and Oaks, A., Synthesis and degradation of barley nitrate reductase, Plant Physiol., 1983, vol. 72, pp. 949–952.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Remmler, J.L. and Campbell, W.H., Regulation of corn leaf nitrate reductase. II. Synthesis and turnover of the enzyme’s activity and protein, Plant Physiol., 1986, vol. 80, pp. 442–447.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Redinbaugh, M.G. and Campbell, W.H., Higher plant responses to environmental nitrate, Physiol. Plant., 1991, vol. 82, pp. 640–650.CrossRefGoogle Scholar
  67. 67.
    Wang, R., Guegler, K., LaBrie, S.T., and Crawford, N.M., Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate, Plant Cell, 2000, vol. 12, pp. 1491–1509.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Redinbaugh, M.G. and Campbell, W.H., Glutamine synthetase and ferredoxin-dependent glutamate synthase expression in the maize (Zea mays) root primary response to nitrate (evidence for an organ-specific response), Plant Physiol., 1993, vol. 101, pp. 1249–1255.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Scheible, W.R., Gonzalez-Fontes, A., Lauerer, M., Muller-Rober, B., Caboche, M., and Stitt, M., Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco, Plant Cell, 1997, vol. 9, pp. 783–798.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Sakakibara, H., Kobayashi, K., Deji, A., and Sugiyama, T., Partial characterization of the signaling pathway for the nitrate-dependent expression of genes for nitrogen-assimilatory enzymes using detached maize leaves, Plant Cell Physiol., 1997, vol. 38, pp. 837–843.CrossRefGoogle Scholar
  71. 71.
    Wang, R., Xing, X., and Crawford, N., Nitrite acts as a transcriptome signal at micromolar concentrations in Arabidopsis roots, Plant Physiol., 2007, vol. 145, pp. 1735–1745.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Mamaeva, A.S., Fomenkov, A.A., Nosov, A.V., Moshkov, I.E., Mur, L.A.J., Hall, M.A., and Novikova, G.V., Regulatory role of nitric oxide in plants, Russ. J. Plant Physiol., 2015, vol. 62, pp. 427–440.CrossRefGoogle Scholar
  73. 73.
    Beuve, N., Rispail, N., Laine, P., Cliquet, J.-B., Ourry, A., and le Deunff, E., Putative role of γ-aminobutyric acid (GABA) as a long-distance signal in upregulation of nitrate uptake in Brassica napus L., Plant Cell Environ., 2004, vol. 27, pp. 1035–1046.CrossRefGoogle Scholar
  74. 74.
    Forde, B.G. and Lea, P.J., Glutamate in plants: metabolism, regulation, and signaling, J. Exp. Bot., 2007, vol. 58, pp. 2339–2358.CrossRefPubMedGoogle Scholar
  75. 75.
    Nichiporovich, A.A., Fotosintez i teoriya polucheniya vysokikh urozhaev. 15-e Timiryazevskoe chtenie (Photosynthesis and the Theory of Obtaining High Crop Yields, the 15th Timiryazev Lecture), Moscow: Nauka, 1956.Google Scholar
  76. 76.
    Andreeva, T.F., Fotosintez i azotnyi obmen list’ev (Photosynthesis and Nitrogen Exchange of Leaves), Moscow: Nauka, 1969.Google Scholar
  77. 77.
    Avdeeva, T.A., Andreeva, T.F., and Nichiporovich, A.A., The effect of nitrogen nutrition on photosynthesis, activity of carboxylating enzymes and dehydrogenase of phosphoglycerol aldehyde in bean and maize plants grown at different light intensities, Sov. Plant Physiol., 1974, vol. 21, pp. 308–314.Google Scholar
  78. 78.
    Champigny, M.L. and Foyer, C., Nitrate activation of cytosolic protein kinases diverts photosynthetic carbon from sucrose to amino acid biosynthesis: basis for a new concept, Plant Physiol., 1992, vol. 100, pp. 7–12.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Lancien, M., Ferrario-Mery, S., Roux, Y., Bismuth, E., Masclaux, C., Hirel, B., Gadal, P., and Hodges, M., Simultaneous expression of NAD-dependent isocitrate dehydrogenase and other Krebs cycle genes after nitrate resupply to short-term nitrogen-starved tobacco, Plant Physiol., 1999, vol. 120, pp. 717–726.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Appenroth, K.J. and Ziegler, P., Light-induced degradation of storage starch in turions of Spirodela polyrhiza depends on nitrate, Plant Cell Environ., 2008, vol. 31, pp. 1460–1469.CrossRefPubMedGoogle Scholar
  81. 81.
    Bruskova, R.K., Nikitin, A.V., Satskaya, M.V., and Izmailov, S.F., Effect of nitrate on pea sucrose synthase, Russ. J. Plant Physiol., 2009, vol. 56, pp. 74–79.CrossRefGoogle Scholar
  82. 82.
    Nikitin, A.V. and Izmailov, S.F., Enzymes of sucrose dissimilation as targets for nitrate in early ontogenesis of garden pea, Russ. J. Plant Physiol., 2016, vol. 63, pp. 152–157.CrossRefGoogle Scholar
  83. 83.
    Doblin, M.S., Kurek, I., Jacob-Wilk, D., and Delmer, D.P., Cellulose biosynthesis in plants: from genes to rosettes, Plant Cell Physiol., 2002, vol. 43, pp. 1407–1420.CrossRefPubMedGoogle Scholar
  84. 84.
    Klinghammer, M. and Tenhaken, R., Genome-wide analysis of the UDP-glucose dehydrogenase gene family in Arabidopsis, a key enzyme for matrix polysaccharides in cell walls, J. Exp. Bot., 2007, vol. 58, pp. 3609–3621.CrossRefPubMedGoogle Scholar
  85. 85.
    Okazaki, Y., Shimojima, M., Sawada, Y., Toyooka, K., Narisawa, T., Mochida, K., Tanaka, H., Matsuda, F., Hirai, A., Hirai, M.Y., Ohta, H., and Saito, K., A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis is the committed enzyme for the first step of sulfolipid biosynthesis, Plant Cell, 2009, vol. 21, pp. 892–909.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Kleczkowski, L.A., Kunz, S., and Wilczynska, M., Mechanisms of UDP-glucose synthesis in plants, Crit. Rev. Plant Sci., 2010, vol. 29, pp. 191–203.CrossRefGoogle Scholar
  87. 87.
    Ruan, Y.L., Jin, Y., Yang, Y.J., Li, G.J., and Boyer, J.S., Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat, Mol. Plant, 2010, vol. 3, pp. 942–955.CrossRefPubMedGoogle Scholar
  88. 88.
    Schluepmann, H., Berke, L., and Sanchez-Perez, G.F., Metabolism control over growth: a case for trehalose-6-phosphate in plants, J. Exp. Bot., 2012, vol. 63, pp. 3379–3390.CrossRefPubMedGoogle Scholar
  89. 89.
    Fritz, C., Palacios-Rojas, N., Feil, R., and Stitt, M., Regulation of secondary metabolism by the carbon–nitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism, Plant J., 2006, vol. 46, pp. 533–548.CrossRefPubMedGoogle Scholar
  90. 90.
    Peng, M., Hudson, D., Schofield, A., Tsao, R., Yang, R., Gu, H., Bi, Y.M., and Rothstein, S.J., Adaptation of Arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis which is controlled by the NLA gene, J. Exp. Bot., 2008, vol. 59, pp. 2933–2944.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Rubin, G., Tohge, T., Matsuda, F., Saito, K., and Scheible, W.R., Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis, Plant Cell, 2009, vol. 21, pp. 3567–3584.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. F. Izmailov
    • 1
  • A. V. Nikitin
    • 1
  • V. A. Rodionov
    • 1
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations