Russian Journal of Plant Physiology

, Volume 65, Issue 2, pp 295–301 | Cite as

Dehydrins in Buds of Main Birch Species under Conditions of Karelia

  • T. D. Tatarinova
  • L. V. Vetchinnikova
  • V. V. Bubyakina
  • A. A. Perk
  • A. G. Ponomarev
  • I. V. Vasilieva
  • O. S. Serebryakova
  • N. E. Petrova
Research Papers


The composition and seasonal dynamics of stress proteins-dehydrins in the buds of the main birch species (downy birch (Betula pubescens Ehrh.), silver birch (B. pendula Roth)) and its varieties (Karelian birch (B. pendula var. carelica (Mercklin) Hämet-Ahti)), growing in northwest Russia (on the example of the Republic of Karelia) were investigated for the first time. It was shown that the level of low-molecular dehydrins, mainly with a molecular mass of 17 kD, is subjected to major seasonal changes, regardless of the specific features of the birch. The maximal level of 17 kD dehydrin was formed during the autumn preparation of plants to dormancy and was persistently preserved during the cold period of the year. The content of medium-molecular weight dehydrins of 66–69 kD was almost at the same level all year round. Significant inter-and intraspecific polymorphism of the major dehydrins of 17 and 66–69 kD in the buds of downy birch, silver birch, and Karelian birch during dormancy was not found. The significant similarity in the composition of total proteins and dehydrins, as well as the uniform nature of their seasonal changes, mainly 17 kD dehydrin, indicates the phylogenetic proximity and similar mechanisms of adaptation of the main species of the genus Betula L. to the temperate continental climate of Karelia.


Betula pubescens Betula pendula Betula pendula var. carelica Karelia buds total protein dehydrins seasonal dynamics polymorphism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gosudarstvennyi doklad o sostoyanii okruzhayushchei sredy Respubliki Kareliya v 2015 godu (Official Report on the Environmental State of the Republic of Karelia in 2015), Gromtsev, A.N., Ed., Petrozavodsk: Dva Tovarishcha, 2016.Google Scholar
  2. 2.
    Likhachev, A.I., Some data on the biology of Betula pubescens and B. verrucosa, Uch. Zap. Orlov. Gos. Pedagog. Inst., 1959, vol. 14, pp. 107–119.Google Scholar
  3. 3.
    Vetchinnikova, L.V., Bereza: voprosy izmenchivosti (morfo-fiziologicheskie i biokhimicheskie aspekty) (Betula: Variability, Morphological, Physiological, and Biochemical Aspects), Moscow: Nauka, 2004.Google Scholar
  4. 4.
    Vetchinnikova, L.V., Titov, A.F., and Kuznetsova, T.Yu., Karel’skaya bereza: biologicheskie osobennosti, dinamika resursov i vosproizvodstvo (Karelian Birch: Biological Features, Resource Dynamics, and Reproduction), Petrozavodsk: Karel. Nauch. Tsentr, Ross. Akad. Nauk, 2013.Google Scholar
  5. 5.
    Vetchinnikova, L.V., Karel’skaya bereza i drugie redkie predstaviteli roda Betula L. (Karelian Birch and Other Rare Members of the Betula L. Genus), Moscow: Nauka, 2005.Google Scholar
  6. 6.
    Krasnaya kniga Respubliki Kareliya (The Red Book of the Republic of Karelia), Ivanter, E.V. and Kuznetsov, O.L., Eds., Petrozavodsk: Kareliya, 2007.Google Scholar
  7. 7.
    Agroklimaticheskie resursy Karel’skoi ASSR (Agroclimatic Resources of the Karelian ASSR), Leningrad: Gidrometeoizdat, 1974.Google Scholar
  8. 8.
    Vetchinnikova, L.V. and Titov, A.F., The origin of the Karelian birch: the ecological-genetic hypothesis, Ekol. Genet., 2016, vol. 14, pp. 3–18.Google Scholar
  9. 9.
    Allagulova, Ch.R., Gimalov, F.R., Shakirova, F.M., and Vakhitov, V.A., The plant dehydrins: structure and putative functions, Biochemistry (Moscow), 2003, vol. 68, pp. 945–951.PubMedGoogle Scholar
  10. 10.
    Welling, A. and Palva, E.T., Molecular control of cold acclimation in trees, Physiol. Plant., 2006, vol. 127, pp. 167–181.CrossRefGoogle Scholar
  11. 11.
    Kosova, K., Prasil, I.T., and Vitamvas, P., Role of dehydrins in plant stress response, in Handbook of Plant and Crop Stress, Pessarakli, M., Ed., Tucson: CRC, 2010, pp. 239–285.Google Scholar
  12. 12.
    Close, T.J., Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins, Physiol. Plant., 1996, vol. 97, pp. 795–803.CrossRefGoogle Scholar
  13. 13.
    Svensson, J., Ismail, A.M., Palva, E.T., and Close, T.J., Dehydrins, in Cell and Molecular Responses to Stress, Storey, K.B. and Storey, J.M., Eds., Amsterdam: Elsevier, 2002, pp. 155–171.Google Scholar
  14. 14.
    Bubyakina, V.V., Tatarinova, T.D., Ponomarev, A.G., Perk, A.A., and Solomonov, N.G., Characteristics of seasonal dynamics of Betula platyphylla Sukacz. dehydrins associated with frost hardiness development under the cryolitic zone conditions, Dokl. Biol. Sci., 2011, vol. 439, pp. 258–261.CrossRefPubMedGoogle Scholar
  15. 15.
    Tatarinova, T.D., Ponomarev, A.G., Perk, A.A., Vasilieva, I.V., and Bubyakina, V.V., Seasonal changes of Betula platyphylla Sukacz. buds associated with the formation of resistance to the extreme climate of Yakutia, Vestn. S.-Peterb. Gos. Univ., 2011, vol. 4, pp. 107–114.Google Scholar
  16. 16.
    Perk, A.A., Ponomarev, A.G., Tatarinova, T.D., and Bubyakina, V.V., Physiological and biochemical characteristics of Betula platyphylla in the conditions of the central and southern Yakutia, Izv. Samar. Nauch. Tsentra Ross. Akad. Nauk, 2011, vol. 13, no. 1 (4), pp. 874–877.Google Scholar
  17. 17.
    Tatarinova, T.D., Perk, A.A., Bubyakina, V.V., Ponomarev, A.G., Vetchinnikova, L.V., and Vasilieva, I.V., Dehydrins in Betula pendula Roth. buds: characteristics of seasonal dynamics, Izv. Samar. Nauch. Tsentra Ross. Akad. Nauk, 2013, vol. 15, no. 3 (2), pp. 799–801.Google Scholar
  18. 18.
    Ponomarev, A.G., Tatarinova, T.D., Perk, A.A., Vasilieva, I.V., and Bubyakina, V.V., Dehydrins associated with the development of frost resistance of Asian white birch, Russ. J. Plant Physiol., 2014, vol. 61, no. 1, pp. 105–111.CrossRefGoogle Scholar
  19. 19.
    Tatarinova, T.D., Vasil’eva, I.V., Perk, A.A., Bubyakina, V.V., and Ponomarev, A.G., Seasonal changes in dehydrins in xylem and cortex of Betula pendula Roth during formation of cold resistance in cryolitic zone conditions, Nauka i Obrazovanie, 2016, vol. 83, no. 3, pp. 83–87.Google Scholar
  20. 20.
    Korotaeva, N.E., Oskorbina, M.V., Kopytova, L.D., Suvorova, G.G., Borovskii, G.B., and Voinikov, V.K., Variations in the content of stress proteins in the needles of common pine (Pinus sylvestris L.) within an annual cycle, J. For. Res., 2012, vol. 17, pp. 89–97.CrossRefGoogle Scholar
  21. 21.
    Lowry, O.H., Rosenbrough, N.J., Farr, A.L., Randall, R.F. Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.PubMedGoogle Scholar
  22. 22.
    Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, pp. 680–685.CrossRefPubMedGoogle Scholar
  23. 23.
    Timmons, T.M. and Dunbar, B.S., Protein blotting and immunodetection, Methods Enzymol., 1990, vol. 182, pp. 679–701.CrossRefPubMedGoogle Scholar
  24. 24.
    Puhakainen, T., Li, Ch., Boije-Malm, M., Kangasjärvi, J., Heino, P., and Palva, E.T., Short day potentiation of low temperature-induced gene expression of a C-repeat-binding factor-controlled gene during cold acclimation in silver birch, Plant Physiol., 2004, vol. 136, pp. 4299–4307.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rinne, P., Welling, A., and Kaikuranta, P., Onset of freezing tolerance in birch (Betula pubescens Ehrh.) involves lea proteins and osmoregulation and is impaired in an ABA-deficient genotype, Plant Cell Environ., 1998, vol. 21, pp. 601–611.CrossRefGoogle Scholar
  26. 26.
    Welling, A., Rinne, P., Viherä-Aarnio, A., Kontunen-Soppela, S., Heino, P., and Palva, E.T., Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.), J. Exp. Bot., 2004, vol. 55, pp. 507–516.CrossRefPubMedGoogle Scholar
  27. 27.
    Karlson, D.T., Zeng, Y.V.E., Stirm, R., Joly, J., and Ashworth, E.N., Photoperiodic regulation of a 24-kDa dehydrin-like protein in red-osier dogwood (Cornus sericea L.) in relation to freeze-tolerance, Plant Cell Physiol., 2003, vol. 44, pp. 25–34.CrossRefPubMedGoogle Scholar
  28. 28.
    Kjellsen, T.D., Yakovlev, I.A., Fossdal, C.G., and Strimbeck, G.R., Dehydrin accumulation and extreme low-temperature tolerance in Siberian spruce (Picea obovata), Tree Physiol., 2013, vol. 33, pp. 1354–1366.CrossRefPubMedGoogle Scholar
  29. 29.
    Strimbeck, G.R., Schaberg, P.G., Fossdal, C.G., Schröder, P.W., and Kjellsen, T.D., Extreme low temperature tolerance in woody plants, Front. Plant Sci., 2015, vol. 6, pp. 1–16.CrossRefGoogle Scholar
  30. 30.
    Vornam, B., Gailing, O., Derory, J., Plomion, C., Kremer, A., and Finkeldey, R., Characterization and natural variation of a dehydrin gene in Quercus petraea (Matt.) Liebl., Plant Biol., 2011, vol. 13, pp. 881–887.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. D. Tatarinova
    • 1
  • L. V. Vetchinnikova
    • 2
  • V. V. Bubyakina
    • 1
  • A. A. Perk
    • 1
  • A. G. Ponomarev
    • 1
  • I. V. Vasilieva
    • 1
  • O. S. Serebryakova
    • 2
  • N. E. Petrova
    • 2
  1. 1.Institute for Biological Problems of Cryolithozone, Siberian BranchRussian Academy of SciencesYakutskRussia
  2. 2.Forest Research Institute, Karelian Research CenterRussian Academy of SciencesPetrozavodskRussia

Personalised recommendations