Russian Journal of Plant Physiology

, Volume 64, Issue 4, pp 588–599 | Cite as

Triangular interplay between ROS, ABA and GA in dormancy alleviation of Bunium persicum seeds by cold stratification

  • R. Amooaghaie
  • F. Ahmadi
Research Papers


Seeds of Bunium persicum (Boiss.) B. Fedtsch. have complex physiological dormancy that can be released by 15 weeks stratification. The present study revealed that cold stratification enhanced content of H2O2, O2 and application of GA3 and ROS donors (Fenton reagent, H2O2, methylviologen and menadione) did not affect or only slightly promoted the germination of non-stratified, fully dormant seeds. Dormancy was markedly decreased by ROS-generating reagents, GA3 and fluridone (an inhibitor of ABA biosynthesis) and was enhanced by ROS-decreasing compounds (DMTU, Tiron, SB and DPI), diniconazole (Dinc, an inhibitor of ABA catabolism) and paclobutrazol (PAC, an inhibitor of GA biosynthesis) when dormancy was partially removed by cold stratification. The response to these compounds reduced with increasing time of stratification. ABA inhibited germination by repressing of NADPH oxidase activity and ROS accumulation and conversely, GA triggered germination by promoting an increase of NADPH oxidase activity and ROS levels. Data in this study, for the first time suggest releasing deep complex physiological dormancy by cold stratification is associated with interplay between ROS and ABA/GA.


Bunium persicum ABA cold stratification GA3 seed dormancy ROS 











methyl viologen


nitric oxide




sodium benzoate


1,2-dihydroxy-benzene-3,5-disulphonic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bewley, J.D., Bradford, K.J., Hillhorst, H.W.M., and Nonogaki, H., Seeds: Physiology of Development, Germination and Dormancy, New York: Springer-Verlag, 2013.CrossRefGoogle Scholar
  2. 2.
    Blake, P.S., Taylor, J.M., and Finch-Savage, W.E., Identification of abscisic acid, indol-3-acetic acid, jasmonic acid, indole-3-acetonitrile, methyl jasmonate and gibberellins in developing, dormant and stratified seeds of ash (Fraxinus excelsior), Plant Growth Regul., 2002, vol. 37, pp. 119–125.CrossRefGoogle Scholar
  3. 3.
    Yamauchi, Y., Ogawa, M., Kuwahara, A., Hanada, A., Kamiya, Y., and Yamaguchi, S., Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds, Plant Cell, 2004, vol. 16, pp. 367–378.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dong, T., Tong, J., Xiao, L., Cheng, H., and Song, S., Nitrate, abscisic acid and gibberellin interactions on the thermoinhibition of lettuce seed germination, Plant Growth Regul., 2012, vol. 66, pp. 191–202.CrossRefGoogle Scholar
  5. 5.
    Ogawa, M., Hanada, A., Yamauchi, Y., Kuwahara, A., Kamiya, Y., and Yamaguchi, S., Gibberellin biosynthesis and response during Arabidopsis seed germination, Plant Cell, 2003, vol. 15, pp. 1591–1604.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Liu, Y., Ye, N., Liu, R., Chen, M., and Zhang, J., H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination, J. Exp. Bot., 2010, vol. 61, pp. 2979–2990.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ali-Rachedi, S., Bouinot, D., Wagner, M.H., Bonnet, M., Sotta, B., Grappin, P., and Jullien, M., Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana, Planta, 2004, vol. 219, pp. 479–488.CrossRefPubMedGoogle Scholar
  8. 8.
    Amooaghaie, R. and Nikzad, Kh., The role of nitric oxide in priming induced low temperature tolerance in two genotypes of tomato, Seed Sci. Res., 2013, vol. 23, pp. 123–131.CrossRefGoogle Scholar
  9. 9.
    Amooaghaie, R., Tabatabaei, F., and Ahadi, A.M., Role of hematin and sodium nitroprusside in regulating Brassica nigra seed germination under nanosilver and silver nitrate stresses, Ecotoxicol. Environ. Saf., 2015, vol. 113, pp. 259–270.CrossRefPubMedGoogle Scholar
  10. 10.
    Bahin, E., Bailly, C., Sotta, B., Kranner, I., Corbineau, F., and Leymarie, J., Crosstalk between reactive oxygen species and hormonal signalling pathway regulates grain dormancy in barley, Plant Cell Environ., 2011, vol. 34, pp. 980–993.CrossRefPubMedGoogle Scholar
  11. 11.
    Bailly, C., El-Maarouf-Bouteau, H., and Corbineau, F., From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology, C. R. Biol., 2008, vol. 331, pp. 806–814.CrossRefPubMedGoogle Scholar
  12. 12.
    El-Maarouf-Bouteau, H. and Bailly, C., Oxidative signaling in seed germination and dormancy, Plant Signal. Behav., 2008, vol. 3, pp. 332–341.Google Scholar
  13. 13.
    Müller, K., Linkies, A., Vreeburg, R.A.M., and Fry, S.C., In vivo cell wall loosening by hydroxyl radicals during seed germination and elongation growth, Plant Physiol., 2009, vol. 150, pp. 1855–1865.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Oracz, K., El-Maarouf-Bouteau, H., Kranner, I., Bogatek, R., Corbineau, F., and Bailly, C., The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination, Plant Physiol., 2009, vol. 150, pp. 494–505.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Debska, K., Krasuska, U., Budnicka, K., Bogatek, R., and Gniazdowska, A., Dormancy removal of apple seeds by cold stratification is associated with fluctuation in H2O2, NO production and protein carbonylation level, J. Plant Physiol., 2013, vol. 170, no. 5, pp. 480–488.CrossRefPubMedGoogle Scholar
  16. 16.
    Oracz, K., El-Maarouf-Bouteau, H., Farrant, J.M., Cooper, K., Belghazi, M., Job, C., Job, D., Corbineau, F., and Bailly, C., ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation, Plant J., 2007, vol. 50, pp. 452–465.CrossRefPubMedGoogle Scholar
  17. 17.
    Barba-Esprn, G., Diaz-Vivancos, P., Clemente-Moreno, M.J., Albacete, A., Faize, L., Faize, M., Pérez-Alfocea, F., and Hernández, J.A., Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings, Plant Cell Environ., 2010, vol. 33, pp. 981–994.CrossRefGoogle Scholar
  18. 18.
    Achard, P., Renou, J.P., Berthomé, R., Harberd, N.P., and Genschik, P., Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species, Curr. Biol., 2008, vol. 18, pp. 656–660.CrossRefPubMedGoogle Scholar
  19. 19.
    Lariguet, P., Ranocha, Ph., de Meyer, M., Barbier, O., Penel, C., and Dunand, C., Identification of a hydrogen peroxide signaling pathway in the control of lightdependent germination in Arabidopsis, Planta, 2013, vol. 238, pp. 381–395.CrossRefPubMedGoogle Scholar
  20. 20.
    Sharma, R.K. and Sharma, S., Effect of storage and cold-stratification on seed physiological aspects of Bunium persicum: a threatened medicinal herb of Trans-Himalaya, Int. J. Exp. Bot., 2010, vol. 6, no. 2, pp. 151–156.CrossRefGoogle Scholar
  21. 21.
    Bonyanpour, A.R. and Khosh-Khui, M., Factors influencing seed germination and seedling growth in black zira [Bunium persicum (Boiss.) B. Fedtsch.], J. Herbs Spices Med. Plants, 2001, vol. 8, no. 1, pp. 79–85.CrossRefGoogle Scholar
  22. 22.
    Pouresmail, M. and Sharifi, M., Breaking seed dormancy in Bunium persicum by stratification and certain plant growth regulators, Proc. Int. Botany Congress, (August 4–7, 2002, Wisconsin), Wisconsin: Univ. Wisconsin, 2002.Google Scholar
  23. 23.
    Van Gestelen, P., Asard, H., and Caubergs, R.J., Solubilization and separation of a plant plasma membrane NADPH-synthase from other NAD(P)H oxidoreductases, Plant Physiol., 1997, vol. 115, pp. 543–550.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Képczynski, J. and Sznigir, P., Response of Amaranthus retroflexus L. seeds to gibberellic acid, ethylene and abscisic acid depending on duration of stratification and burial, Plant Growth Regul., 2013, vol. 70, pp. 15–26.CrossRefGoogle Scholar
  25. 25.
    Calvo, A.P., Nicolás, C., Nicolás, G., and Rodriguez, D., Evidence of a cross-talk regulation a GA20-oxidase (FsGA20ox1) by gibberellins and ethylene during the breaking of dormancy in Fagus sylvatica seeds, Physiol. Plant., 2004, vol. 120, pp. 623–630.CrossRefPubMedGoogle Scholar
  26. 26.
    El-Maarouf-Bouteau, H., Job, C., Job, D., Corbineau, F., and Bailly, C., ROS signaling in seed dormancy alleviation, Plant Signal. Behav., 2007, vol. 2, no. 5, pp. 362–364.CrossRefGoogle Scholar
  27. 27.
    Whitaker, C., Beckett, R.P., Minibayeva, F.V., and Kranner, I., Alleviation of dormancy by reactive oxygen species in Bidens pilosa L. seeds, S. Afr. J. Bot., 2010, vol. 76, pp. 601–605.CrossRefGoogle Scholar
  28. 28.
    Müller, K., Carstens, A.C., Linkies, A., Torres, M.A., and Leubner-Metzger, G., The NADPH-oxidase AtrbohB plays a role in Arabidopsis seed after-ripening, New Phytol., 2009, vol. 184, pp. 885–897.CrossRefPubMedGoogle Scholar
  29. 29.
    Barba-Espin, G., Nicolas, E., Almansa, M.S., Cantero-Navarro, E., Albacete, A., Hernández, J.A., and Diaz-Vivancos, P., Role of thioproline on seed germination: interaction ROS–ABA and effects on antioxidative metabolism, Plant Physiol. Biochem., 2012, vol. 59, pp. 30–36.CrossRefPubMedGoogle Scholar
  30. 30.
    Argyris, J., Dahal, P., Hayashi, E., Still, D.W., and Bradford, K., Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes, Plant Physiol., 2008, vol. 148, pp. 926–947.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Biology Department, Science FacultyShahrekord UniversityShahrekordIran
  2. 2.Biology Department, Science FacultyPayame Noor UniversityTehranIran

Personalised recommendations