Russian Journal of Plant Physiology

, Volume 64, Issue 4, pp 616–624 | Cite as

Expression of genes encoding sucrose synthase isoforms during anomalous xylogenesis in Karelian birch

  • Yu. L. Moshchenskaya
  • N. A. Galibina
  • L. V. Topchieva
  • L. L. Novitskaya
Research Papers


Activity of sucrose synthase (SS) and the transcript levels for SS-encoding genes SUS1, SUS2, and SUS3 were assayed during xylogenesis in two varieties of silver birch: common birch (Betula pendula Roth var. pendula) and Karelian birch (B. pendula var. carelica (Mercklin)). The xylem specimens of Karelian birch were sampled from the trunks with the “normal” wood structure (unpatterned trees) and from the trunks of patterned trees in stem regions exhibiting patterned and unpatterned wood. In the period of high cambial activity, the SS activity in common silver birch was elevated due to expression of SuSy1 isoform (SUS1 gene). The UDP-glucose produced in these trees was largely used for cellulose synthesis in cell walls of conducting vessels and fibers that are the main wood constituents in these plants. In Karelian birch, the patterned wood with abundant parenchymal cells was formed on the background of a substantial decrease in expression of SUS1 and SUS2 genes, inhibition of SS activity, and lowering the cellulose content per unit tissue weight. Within the same trees of Karelian birch, the unpatterned wood regions containing numerous conducting vessels and fibers were formed on the background of high expression of SUS1 and SUS2 genes, elevated SS activity, and substantial accumulation of cellulose and starch. The unpatterned plants of Karelian birch occupied intermediate position in terms of SS activity and cellulose content between the common birch and Karelian birch trees with the patterned wood. The results shed new light on the role of SS in the induction of structural anomalies in the wood of Karelian birch.


Betula pendula var. carelica patterned wood sucrose decomposition expression of SUS1/SUS2/SUS3 starch cellulose 



polymerase chain reaction


relative quantity of gene expression


sucrose synthase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coleman, H.D., Yan, J., and Mansfield, S.D., Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, pp. 13118–13123.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Delmer, D.P. and Amor, Y., Cellulose biosynthesis, Plant Cell, 1995, vol. 7, pp. 987–1000.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Brill, E., Thournout, M., White, R.G., Llewellyn, D., Campbell, P.M., Engelen, S., Ruan, Y.L., Arioli, T., and Furbank, R.T., A novel isoform of sucrose synthase is targeted to the cell wall during secondary cell wall synthesis in cotton fiber, Plant Physiol., 2011, vol. 157, pp. 40–54.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Galibina, N.A., Novitskaya, L.L., Krasavina, M.S., and Moshchenskaya, Yu.L., Activity of sucrose synthase in trunk tissues of Karelian birch during cambial growth, Russ. J. Plant Physiol., 2015, vol. 62, no. 3, pp. 381–389.CrossRefGoogle Scholar
  5. 5.
    Galibina, N.A., Novitskaya, L.L., Krasavina, M.S., and Moshchenskaya, Yu.L., Invertase activity in trunk tissues of Karelian birch, Russ. J. Plant Physiol., 2015, vol. 62, no. 6, pp. 753–760.CrossRefGoogle Scholar
  6. 6.
    Smeekens, S., Sugar-induced signal transduction in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 2000, vol. 51, pp. 49–81.CrossRefPubMedGoogle Scholar
  7. 7.
    Koch, K.E., Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development, Curr. Opin. Plant Biol., 2004, vol. 7, pp. 235–246.CrossRefPubMedGoogle Scholar
  8. 8.
    Rolland, F., Baena-Gonzalez, E., and Sheen, J., Sugar sensing and signaling in plants: conserved and novel mechanisms, Annu. Rev. Plant Biol., 2006, vol. 57, pp. 675–709.CrossRefPubMedGoogle Scholar
  9. 9.
    Ruan, Y.L., Llewellyn, D.J., and Furbank, R.T., Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development, Plant Cell Online, 2003, vol. 15, pp. 952–964.CrossRefGoogle Scholar
  10. 10.
    Baud, S., Vaultier, M.N., and Rochat, C., Structure and expression profile of the sucrose synthase multigene family in Arabidopsis, J. Exp. Bot., 2004, vol. 55, pp. 397–409.CrossRefPubMedGoogle Scholar
  11. 11.
    Barratt, D.H., Derbyshire, P., Findlay, K., Pike, M., Wellner, N., Lunn, J., Feil, R., Simpson, C., Maule, A.J., and Smith, A.M., Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, pp. 13124–13129.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zhang, D., Xu, B., Yang, X., Zhang, Z., and Li, B., The sucrose synthase gene family in Populus: structure, expression, and evolution, Tree Gen. Genome, 2011, vol. 7, pp. 443–456.CrossRefGoogle Scholar
  13. 13.
    Nilsson, R., Bernfur, K., Gustavsson, N., Bygdell, J., Wingsle, G., and Larsson, C., Proteomics of plasma membranes from poplar trees reveals tissue distribution of transporters, receptors, and proteins in cell wall formation, Mol. Cell. Proteomics, 2010, vol. 9, pp. 368–387.CrossRefPubMedGoogle Scholar
  14. 14.
    Geisler-Lee, J., Geisler, M., Coutinho, P.M., Segerman, B., Nishikubo, N., Takahashi, J., Aspeborg, H., Djerbi, S., Master, E., Andersson-Gunneras, S., Sundberg, B., Karpinski, S., Teeri, T.T., Kleczkowski, L.A., Henrissat, B., et al., Poplar carbohydrate-active enzymes. gene identification and expression analyses, Plant Physiol., 2006, vol. 140, pp. 946–962.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lyubavskaya, A.Ya., Karel’skaya bereza (Karelian Birch), Moscow: Lesnaya Promyshlennost', 1978.Google Scholar
  16. 16.
    Baril'skaya, L.A., Structural analysis of the figured wood of Karelian birch Strukturnyi analiz uzorchatoi drevesiny karel’skoi berezy, Bot. Zh., 1978, vol. 63, no. 6, pp. 805–811.Google Scholar
  17. 17.
    Bruskova, R.K., Nikitin, A.V., Satskaya, M.V., and Izmailov, S., Effect of nitrate on pea sucrose synthase, Russ. J. Plant Physiol., 2009, vol. 56, pp. 74–79.CrossRefGoogle Scholar
  18. 18.
    Pucher, G.W., Leavenworth, C.S., and Vickery, H.B., Determination of starch in plant tissues, Anal. Chem., 1948, vol. 20, pp. 850–853.CrossRefGoogle Scholar
  19. 19.
    Geles, I.S., Glushko, L.A., and Zhuchenko, L.G., The study of the chemical composition of the spruce and pine bark, Khim. Drev., 1973, no. 2, pp. 107–116.Google Scholar
  20. 20.
    Pfaffl, M.W., Tichopad, A., Prgomet, C., and Neuvians, T.P., Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations, Biotechnol. Lett., 2004, vol. 26, pp. 509–515.CrossRefPubMedGoogle Scholar
  21. 21.
    Ye, Z.H. and Zhong, R., Molecular control of wood formation in trees, J. Exp. Bot., 2015, vol. 66, pp. 4119–4131.CrossRefPubMedGoogle Scholar
  22. 22.
    Song, D., Shen, J., and Li, L., Characterization of cellulose synthase complexes in Populus xylem differentiation, New Phytol., 2010, vol. 187, pp. 777–790.CrossRefPubMedGoogle Scholar
  23. 23.
    Gerber, L., Zhang, B., Roach, M., Rende, U., Gorzsas, A., Kumar, M., Burgert, I., Niittylla, T., and Sundberg, B., Deficient sucrose synthase activity in developing wood does not specifically affect cellulose biosynthesis, but causes an overall decrease in cell wall polymers, New Phytol., 2014, vol. 203, pp. 1220–1230.CrossRefPubMedGoogle Scholar
  24. 24.
    Andersson-Gunneras, S., Mellerowicz, E.J., Love, J., Segerman, B., Ohmiya, Y., Coutinho, P.M., Nilsson, P., Henrissat, B., Moritz, T., and Sundberg, B., Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis, Plant, 2006, vol. 45, pp. 144–165.CrossRefGoogle Scholar
  25. 25.
    Novitskaya, L.L., Galibina, N.A., and Nikerova, K.M., Transport and accumulation of sugars in phloem of Betula pendula Roth. var. pendula and var. carelica, Tr. Karel. Nauch. Tsentra, Ross. Akad. Nauk, 2015, no. 11, pp. 35–47.Google Scholar
  26. 26.
    Novitskaya, L.L. and Kushnir, F.V., The role of sucrose in regulation of trunk tissue development in Betula pendula Roth., J. Plant Growth Regul., 2006, vol. 25, no. 1, pp. 18–29.CrossRefGoogle Scholar
  27. 27.
    Nguyen, Q.A., Luan, S., Wi, S.G., Bae, H., Lee, D.S., and Bae, H.J., Pronounced phenotypic changes in transgenic tobacco plants overexpressing sucrose synthase may reveal a novel sugar signaling pathway, Front. Plant Sci., 2016, vol. P, pp. 1–15.Google Scholar
  28. 28.
    Matic, S., Akerlund, H.-E., Everitt, E., and Widell, S., Sucrose synthase isoforms in cultured tobacco cells, Plant Physiol. Biochem., 2004, vol. 42, pp. 299–306.CrossRefPubMedGoogle Scholar
  29. 29.
    Dodueva, I.E., Gancheva, M.S, Osipova, M.A., Tvorogova, V.E., and Lutova, L.A., Lateral meristems of higher plants: phytohormonal and genetic control, Russ. J. Plant Physiol., 2014, vol. 61, no. 5, pp. 571–589.CrossRefGoogle Scholar
  30. 30.
    Etchells, J.P., Mishra, L.S., Kumar, M., Campbell, L., and Turner, S.R., Wood formation in trees is increased by manipulating PXY-regulated cell division, Curr. Biol., 2015, vol. 25, pp. 1050–1055.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Yu. L. Moshchenskaya
    • 1
  • N. A. Galibina
    • 1
  • L. V. Topchieva
    • 2
  • L. L. Novitskaya
    • 1
  1. 1.Institute of Forestry, Karelian Research CenterRussian Academy of SciencesPetrozavodsk, KareliaRussia
  2. 2.Institute of Biology, Karelian Research CenterRussian Academy of SciencesPetrozavodsk, KareliaRussia

Personalised recommendations