Russian Journal of Plant Physiology

, Volume 64, Issue 1, pp 28–40 | Cite as

Chromosome regions associated with the activity of lipoxygenase in the genome D of Triticum aestivum L. under water deficit

  • M. D. PermyakovaEmail author
  • A. V. Permyakov
  • S. V. Osipova
  • T. A. Pshenichnikova
  • A. A. Shishparenok
  • E. G. Rudikovskaya
  • A. V. Rudikovsky
  • V. V. Verkhoturov
  • A. Börner
Research Papers


Quantitative trait loci (QTLs) associated with the phenotypic expression of the activity of different forms of lipoxygenase (LOX) under water deficit were detected in the chromosomes of the D-genome using intogression lines of common wheat Triticum aestivum L. Chinese Spring (Synthetic 6x). QTL associated with the activity of seed soluble LOX was identified on the short arm of chromosome 4D. The activity of membranebound form of enzyme in the seedlings was mapped to the short arm, while that of a soluble form was on the long arm of chromosome 5D. Two regions responsible for the activity of soluble LOX in the leaves were found on the short arm of chromosome 2D. Three QTLs associated with the activities of chloroplast LOXs were found on the same chromosome: the activity of the soluble form was linked to Xgwm261 and Xgwm539 markers, and the membrane form to Xgdm93 marker. QTLs for the activities of both soluble and membrane-bound LOX in the leaves were identified in the centromeric region of chromosome 7D. The activities of two membrane enzymes in the leaves were linked to Xgdm130 marker on the short arm of this chromosome. Loci associated with the activity of different LOX forms colocalized with QTLs for the shoot mass, gas exchange parameters, chlorophyll fluorescence, content of photosynthetic pigments, and grain productivity of wheat. A correlation between these parameters and the LOX activity was detected and it was shown that various forms of the enzyme were differentially involved in the adaptation of wheat plants to water deficit. The current paper discusses their presumed physiological role.


Triticum aestivum quantitative trait loci water deficit lipid metabolism lipoxygenase activity gas exchange chlorophyll fluorescence photosynthetic pigments drought 



water deficit


stem length


jasmonic acid


introgression lines




membrane-bound LOX in the leaves


soluble LOX in the leaves


quantitative trait locus




grain weight per ear


shoot mass


normal water supply


CO2 assimilation rate


polyunsaturated fatty acids


membrane-bound LOX in the seedlings


soluble LOX in the seedlings


spikelet number per spike


soluble LOX in the seeds


tolerance index


transpiration rate


electron transport rate


stomatal conductance




membrane-bound LOX in the chloroplasts


soluble LOX in the chloroplasts


water use efficiency


effective photochemical quantum yield of photosystem II


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cattivelli, L., Rizza, F., Badeck, F.-W., Mazzucotelli, E., Mastrangelo, A.M., Francia, E., Marè, C., Tondelli, A., and Stanca, A.M., Drought tolerance improvement in crop plants: an integrated view from breeding to genomics, Field Crops Res., 2008, vol. 105, pp. 1–14.CrossRefGoogle Scholar
  2. 2.
    Chesnokov, Yu.V., Goncharova, E.A., Sitnikov, M.N., Kocherina, N.V., Lovasser, U., and Berner, A., Mapping QTL for water regime in spring bread wheat, Russ. J. Plant Physiol., 2014, vol. 61, no. 6, pp. 834–841.CrossRefGoogle Scholar
  3. 3.
    Shukla, S., Singh, K., Patil, R.V., Kadam, S., Bharti, S., Prasad, P., Singh, N.K., and Khanna-Chopra, R., Genomic regions associated with grain yield under drought stress in wheat (Triticum aestivum L.), Euphytica, 2015, vol. 203, pp. 449–467.CrossRefGoogle Scholar
  4. 4.
    Parent, B., Shahinnia, F., Langridge, P., and Fleury, D., Combining field performance with controlled environment plant imaging to identify the genetic control of growth and transpiration underlying yield response to water-deficit stress in wheat, J. Exp. Bot., 2015, vol. 66, no. 18, pp. 5481–5492.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Feussner, I. and Wasternack, C., The lipoxygenase pathway, Annu. Rev. Plant Biol., 2002, vol. 53, pp. 275–297.CrossRefPubMedGoogle Scholar
  6. 6.
    Wasternack, C. and Hause, B., Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development, Ann. Bot., 2013, vol. 111, pp. 1021–1058.PubMedGoogle Scholar
  7. 7.
    Maccarrone, M., Veldink, G.A., Aghrò, A.F., and Vliegenthart, J.F.G., Modulation of soybean lipoxygenase expression and membrane oxidation by water deficit, FEBS Lett., 1995, vol. 371, no. 3, pp. 223–226.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang, H., Zhang, L., Lv, H., Yu, Z., Zhang, D., and Zhu, W., Identification of changes in Triticum aestivum L. leaf proteome in response to drought stress by 2D-PAGE and MALDI-TOF/TOF mass spectrometry, Acta Physiol. Plant., 2014, vol. 36, pp. 1385–1398.CrossRefGoogle Scholar
  9. 9.
    Permyakova, M.D., Permyakov, A.V., Osipova, S.V., and Pshenichnikova, T.A., Lipoxygenase from the leaves of wheat grown under different water supply conditions, Appl. Biochem. Microbiol., 2012, vol. 48, no. 1, pp. 77–82.CrossRefGoogle Scholar
  10. 10.
    Pestsova, E.G., Börner, A., and Röder, M.S., Development and QTL assessment of Triticum aestivum–Aegilops tauschii introgression lines, Theor. Appl. Genet., 2006, vol. 112, pp. 634–647.CrossRefPubMedGoogle Scholar
  11. 11.
    Osipova, S.V., Permyakov, A.V., Permyakova, M.D., Davydov, V.A., Pshenichnikova, T.A., and Börner, A., Tolerance of prolonged drought among a set of bread wheat chromosome substitution lines, Cereal Res. Comm., 2011, vol. 39, no. 3, pp. 343–351.CrossRefGoogle Scholar
  12. 12.
    Osipova, S., Permyakov, A., Permyakova, M., Pshenichnikova, T., Verkhoturov, V., Rudikovsky, A., Rudikovskaya, E., Shishparenok, A., Doroshkov, A., and Börner, A., Regions of the bread wheat D genome associated with variation in key photosynthesis traits and shoot biomass under both well watered and water deficient conditions, J. Appl. Genet., 2016, vol. 57, no. 2, pp.151–163. doi 10.1007/s13353-015-0315-4CrossRefPubMedGoogle Scholar
  13. 13.
    Nelson, J.C., QGENE: software for marker-based genomic analysis and breeding, Mol. Breed., 1997, vol. 3, pp. 239–245.CrossRefGoogle Scholar
  14. 14.
    Mishra, R.K. and Singhal, G.S., Function of photosynthetic apparatus of intact wheat leaves under high light and heat stress and its relationship with peroxidation of thylakoid lipids, Plant Physiol., 1992, vol. 98, pp. 1–6.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    van der Graaff, E., Schwacke, R., Schneider, A., Desimone, M., Flügge, U.-I., and Kunze, R., Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence, Plant Physiol., 2006, vol. 141, pp. 776–792.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Dave, A., Hernández, M.L., He, Z., Andriotis, V.M.E., Vaistij, F.E., Larson, T.R., and Graham, I.A., 12-Oxophytodienoic acid accumulation during seed development represses seed germination in Arabidopsis, Plant Cell, 2011, vol. 23, pp. 583–599.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Feng, B., Dong, Z., Xu, Z., An, X., Qin, H., Wu, N., Wang, D., and Wang, T., Molecular analysis of lipoxygenase (LOX) genes in common wheat and phylogenetic investigation of LOX proteins from model and crop plants, J. Cereal Sci., 2010, vol. 52, pp. 387–394.CrossRefGoogle Scholar
  18. 18.
    Morrison, W.R., Law, C.N., Wylie, L.J., Coventry, A.M., and Seekings, J., The effect of group 5 chromosomes on the free polar lipids and breadmaking quality of wheat, J. Cereal Sci., 1989, vol. 9, pp. 41–51.CrossRefGoogle Scholar
  19. 19.
    Pauly, A., Pareyt, B., Fierens, E., and Delcour, J.A., Wheat (Triticum aestivum L. and T. turgidum L. ssp. durum) kernel hardness. I. Current view on the role of puroindolines and polar lipids, Compr. Rev. Food Sci. Food Saf., 2013, vol. 12, pp. 413–426.CrossRefGoogle Scholar
  20. 20.
    Turnbull, K.M. and Rahman, S., Endosperm texture in wheat, J. Cereal Sci., 2002, vol. 36, pp. 327–337.CrossRefGoogle Scholar
  21. 21.
    Nelson, J.C., Andreescu, C., Breseghello, F., Finney, P.L., Gualberto, D.G., Bergman, C.J., Pena, R.J., Perretant, M.R., Leroy, P., Qualset, C.O., and Sorrells, M.E., Quantitative trait locus analysis of wheat quality traits, Euphytica, 2006, vol. 149, pp. 145–159.CrossRefGoogle Scholar
  22. 22.
    Finnie, S.M., Jeannotte, R., Morris, C.F., Giroux, M.J., and Faubion, J.M., Variation in polar lipids located on the surface of wheat starch, J. Cereal Sci., 2010, vol. 51, pp. 73–80.CrossRefGoogle Scholar
  23. 23.
    Parker, G.D., Chalmers, K.J., Rathjen, A.J., and Langridge, P., Mapping loci associated with milling yield in wheat (Triticum aestivum L.), Mol. Breed., 1999, vol. 5, pp. 561–568.CrossRefGoogle Scholar
  24. 24.
    Chen, F., Xu, H.X., Zhang, F.Y., Xia, X.C., He, Z.H., Wang, D.W., Dong, Z.D., Zhan, K.H., Cheng, X.Y., and Cui, D.Q., Physical mapping of puroindoline b-2 genes and molecular characterization of a novel variant in durum wheat (Triticum turgidum L.), Mol. Breed., 2011, vol. 28, pp. 153–161.CrossRefGoogle Scholar
  25. 25.
    Simon, M.R., Ayala, F.M., Cordo, C.A., Röder, M.S., and Börner, A., The use of wheat/goatgrass introgression lines for the detection of gene(s) determining resistance to septoria tritici blotch (Mycosphaerella graminicola), Euphytica, 2007, vol. 154, pp. 249–254.CrossRefGoogle Scholar
  26. 26.
    Groos, C., Robert, N., Bervas, E., and Charmet, G., Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat, Theor. Appl. Genet., 2003, vol. 106, pp. 1032–1040.PubMedGoogle Scholar
  27. 27.
    Lu, Y., Lan, C., Liang, S., Zhou, X., Liu, D., Zhou, G., Lu, Q., Jing, J., Wang, M., Xia, X., and He, Z., QTL mapping for adult-plant resistance to stripe rust in Italian common wheat cultivars Libellula and Strampelli, Theor. Appl. Genet., 2009, vol. 119, pp. 1349–1359.CrossRefPubMedGoogle Scholar
  28. 28.
    Shoeva, O.Y., Gordeeva, E.I., and Khlestkina, E.K., The regulation of anthocyanin synthesis in the wheat pericarp, Molecules, 2014, vol. 19, pp. 20266–20279.CrossRefPubMedGoogle Scholar
  29. 29.
    Dai, H., Jia, G., and Shan, C., Jasmonic acid-induced hydrogen peroxide activates MEK1/2 in upregulating the redox states of ascorbate and glutathione in wheat leaves, Acta Physiol. Plant., 2015, vol. 37, p. 200. doi 10.1007/s11738-015-1956-yCrossRefGoogle Scholar
  30. 30.
    Huang, X.Q., Cöster, H., Ganal, M.W., and Röder, M.S., Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.), Theor. Appl. Genet., 2003, vol. 106, pp. 1379–1389.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. D. Permyakova
    • 1
    Email author
  • A. V. Permyakov
    • 1
  • S. V. Osipova
    • 1
    • 4
  • T. A. Pshenichnikova
    • 2
  • A. A. Shishparenok
    • 1
  • E. G. Rudikovskaya
    • 1
  • A. V. Rudikovsky
    • 1
  • V. V. Verkhoturov
    • 3
  • A. Börner
    • 5
  1. 1.Siberian Institute of Plant Physiology and Biochemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia
  2. 2.Federal Research Center, Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Irkutsk National Research Technical UniversityIrkutskRussia
  4. 4.Irkutsk State UniversityIrkutskRussia
  5. 5.Leibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany

Personalised recommendations