Russian Journal of Plant Physiology

, Volume 63, Issue 4, pp 566–574 | Cite as

pH and CO2 effects on Coelastrella (Scotiellopsis) rubescens growth and metabolism

  • G. S. Minyuk
  • E. S. Chelebieva
  • I. N. Chubchikova
  • N. V. Dantsyuk
  • I. V. Drobetskaya
  • E. G. Sakhon
  • O. B. Chivkunova
  • K. A. Chekanov
  • E. S. Lobakova
  • R. A. Sidorov
  • A. E. SolovchenkoEmail author
Research Papers


We studied effects of рН and СО2 enrichment on the physiological condition and biochemical composition of a carotenogenic microalga Coelastrella (Scotiellopsis Vinatzer) rubescens Kaufnerová et Eliás (Scenedesmaceae, Sphaeropleales, Chlorophyceae), a promising source of natural astaxanthin. The microalga was grown at a constant pH (5, 6, 7 or 8) maintained by direct СО2 injection. The air-sparged culture served as the control. Cell division rate and size, dry biomass productivity, the rates of nitrogen and phosphorus uptake as well as photosynthetic pigment and total lipid content and fatty acid composition were followed. С. rubescens possessed a narrow-range рН tolerance (the optimum рН 6–7). Under these conditions, the highest values of the maximum (1.0–1.1 1/day) and average (0.3–0.35 1/day) specific growth rate, chlorophyll а (4.8–4.9%) and total carotenoid dry weight percentages (1.7–1.8%) were recorded. Cell lipid fatty acid unsaturation index (1.851) and polyunsaturated fatty acid percentage (36–39%) and С18:3 ω3/С18:1 ω9 ratio (3.8–4.5) were also the highest under these conditions. A decline of рН to 5 brought about severe stress manifesting itself as a cell division cessation, photosynthetic apparatus reduction, two-fold increase in cell volume, accumulation of dry weight and lipids and a considerable decline in fatty acid unsaturation. Cultivation of С. rubescens without СО2 enrichment resulted in a rapid alkalization of the medium to рН 9.5–10.5 impairing the physiological condition of the cells. Reasons of the deteriorative effects of suboptimal pH values on the physiological condition of C. rubescens are discussed.


Coelastrella (Scotiellopsis) rubescens СО2 cultivation fatty acids growth rate рН pigments 






Chl а, Chl b

chlorophylls а and b


fatty acids


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lemoine, Y. and Schoefs, B., Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress, Photosynth. Res., 2010, vol. 106, pp. 155–177.CrossRefPubMedGoogle Scholar
  2. 2.
    Han, D., Li, Y., and Hu, Q., Biology and commercial aspects of Haematococcus pluvialis, in Handbook of Microalgal Culture: Applied Phycology and Biotechnology, Richmond, A., and Hu, Q., Eds., Hoboken: Wiley, 2013, pp. 388–406.CrossRefGoogle Scholar
  3. 3.
    Solovchenko, A.E., Physiology and adaptive significance of secondary carotenogenesis in green microalgae, Russ. J. Plant Physiol., 2013, vol. 60, pp. 1–13.CrossRefGoogle Scholar
  4. 4.
    Yuan, J.P., Peng, J., Yin, K., and Wang, J.H., Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae, Mol. Nutr. Food Res., 2011, vol. 55, pp. 150–165.CrossRefPubMedGoogle Scholar
  5. 5.
    Boussiba, S., Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response, Physiol. Plant., 2000, vol. 108, pp. 111–117.CrossRefGoogle Scholar
  6. 6.
    Fábregas, J., Otero, A., Maseda, A., and Domínguez, A., Two stage for production of astaxanthin from Haematococcus pluvialis, J. Biotechnol., 2001, vol. 89, pp. 65–71.CrossRefPubMedGoogle Scholar
  7. 7.
    Liu, B.H. and Lee, Y.K., Secondary carotenoids formation by the green alga Chlorococcum sp., J. Appl. Phycol., 2000, vol. 12, pp. 301–307.CrossRefGoogle Scholar
  8. 8.
    Chubchikova, I.N., Minyuk, G.S., Drobetskaya, I.V., and Terent’eva, N.V., Chlorococcal microalgae as source of natural secondary carotenoids, Ekol. Morya, 2009, no. 77, pp. 77–83.Google Scholar
  9. 9.
    Qin, S., Liu, G.X., and Hu, Z.Y., The accumulation and metabolism of astaxanthin in Scenedesmus obliquus (Chlorophyceae), Process Biochem., 2008, vol. 43, pp. 795–802.CrossRefGoogle Scholar
  10. 10.
    Chubchikova, I.N., Minyuk, G.S., and Drobetskaya, I.V., Secondary carotenogenesis in green microalgae Scotiellopsis rubescens Vinatz. under natural insolation and temperature, Ekol. Morya, 2010, no. 81, pp. 77–81.Google Scholar
  11. 11.
    Chubchikova, I.N., Minyuk, G.S., Drobetskaya, I.V., and Dantsyuk, N.V., Optimization of nutrient medium for growing of the microalgae Scotiellopsis rubescens Vinatz. (Chlorophyceae), Uch. Zap. Tavrichesk. Nats. Univ. im. V.I. Vernadskogo, Ser. Biol., Khim., 2013, vol. 26, pp. 196–205.Google Scholar
  12. 12.
    Azov, Y., Effect of pH on inorganic carbon uptake in algal cultures, Appl. Environ. Microbiol., 1982, vol. 43, pp. 1300–1306.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Muradyan, E.A., Klyachko-Gurvich, G.L., Tsoglin, L.N., Sergeenko, T.V., and Pronina, N.A., Changes in lipid metabolism during adaptation of the Dunaliella salina photosynthetic apparatus to high CO2 concentration, Russ. J. Plant Physiol., 2004, vol. 51, pp. 53–62.CrossRefGoogle Scholar
  14. 14.
    Juneja, A., Ceballos, R.M., and Murthy, G.S., Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review, Energies, 2013, vol. 6, pp. 4607–4638.CrossRefGoogle Scholar
  15. 15.
    Solovchenko, A. and Khozin-Goldberg, I., High-Co2 tolerance in microalgae: possible mechanisms and implications for biotechnology and bioremediation, Biotechnol. Lett., 2013, vol. 35, pp. 1745–1752.CrossRefPubMedGoogle Scholar
  16. 16.
    Katalog kul’tur mikrovodoroslei v kollektsiyakh SSSR (Catalog of Microalgae Cultures in the Soviet Union Collections), Moscow: Inst. Plant Physiol., Russ. Akad. Nauk, 1991.Google Scholar
  17. 17.
    Kaufnerová, V. and Eliáš, M., The demise of the genus Scotiellopsis Vinatzer (Chlorophyta), Nova Hedwigia, 2013, vol. 97, pp. 415–428.CrossRefGoogle Scholar
  18. 18.
    Hyka, P., Lickova, S., Přibyl, P., Melzoch, K., and Kovar, K., Flow cytometry for the development of biotechnological processes with microalgae, Biotechnol. Adv., 2013, vol. 31, pp. 2–16.CrossRefPubMedGoogle Scholar
  19. 19.
    Wood, A.M., Everroad, R.C., and Wingard, L.M., Measuring growth rates in microalgal cultures, Algal Culturing Techniques, Andersen, R.A., Ed., Burlington: Elsevier, 2005, pp. 269–285.Google Scholar
  20. 20.
    Vonshak, A., Laboratory techniques for cultivation of microalgae, in Handbook of Microalgal Mass Culture, Richmond, A., Ed., Boca-Raton: CRC Press, 1986, pp. 117–145.Google Scholar
  21. 21.
    Chekanov, K.A. and Solovchenko, A.E., Possibilities and limitations of non-destructive monitoring of the unicellular green microalgae (Chlorophyta) in the course of balanced growth, Russ. J. Plant Physiol., 2015, vol. 62, pp. 270–278.CrossRefGoogle Scholar
  22. 22.
    Lichtenthaler, H.K., Chlorophylls and carotenoids: pigments of photosynthetic membranes, Methods Enzymol., 1987, vol. 148, pp. 350–382.CrossRefGoogle Scholar
  23. 23.
    Chekanov, K., Lobakova, E., Selyakh, I., Semenova, L., Sidorov, R., and Solovchenko, A., Accumulation of astaxanthin by a new Haematococcus pluvialis strain BM1 from the White Sea coastal rocks (Russia), Mar. Drugs, 2014, vol. 12, pp. 4504–4520.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ahlgren, G. and Merino, L., Lipid analysis of freshwater microalgae: a method study, Arch. Hydrobiol., 1991, vol. 121, pp. 295–306.Google Scholar
  25. 25.
    Metody gidrokhimicheskikh issledovanii osnovnykh biogennykh elementov (Methods for Hydrochemical Studies of Major Nutrients), Moscow: VNIRO, 1988.Google Scholar
  26. 26.
    Tsoglin, L.N., Avramova, S., Gebov, A., Dilov, Ch., and Semenenko, V.E., Study of O2-gas exchange and optimization of microalgae cultivation in open installations of “Shetlik” type, Sov. Plant Physiol., 1980, vol. 27, pp. 644–652.Google Scholar
  27. 27.
    Lee, Y.K., Ding, S.Y., Low, C.S., Chang, Y.C., Forday, W.L., and Chew, P.C., Design and performance of an α-type tubular photobioreactor for mass cultivation of microalgae, J. Appl. Phycol., 1995, vol. 7, pp. 47–51.CrossRefGoogle Scholar
  28. 28.
    Moheimani, N.R., Long term outdoor growth and lipid productivity of fresh and seawater green microalgae (Chlorophyta) in bag photobioreactors, J. Appl. Phycol., 2013, vol. 25, pp. 167–176.CrossRefGoogle Scholar
  29. 29.
    Grobbelaar, J.U., Inorganic algal nutrition, in Handbook of Microalgal Culture: Applied Phycology and Biotechnology, Richmond, A. and Hu, Q., Eds., Hoboken: Wiley, 2013, pp. 123–133.CrossRefGoogle Scholar
  30. 30.
    Guschina, I. and Harwood, J., Lipids and lipid metabolism in eukaryotic algae, Prog. Lipid Res., 2006, vol. 45, pp. 160–186.CrossRefPubMedGoogle Scholar
  31. 31.
    Tsuzuki, M., Ohnuma, E., Sato, N., Takaku, T., and Kawaguchi, A., Effects of CO2 concentration during growth on fatty acid composition in microalgae, Plant Physiol., 1990, vol. 93, pp. 851–856.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Abe, K., Hattori, H., and Hirano, M., Accumulation and antioxidant activity of secondary carotenoids in the aerial microalgae Coelastrella striolata var. multistriata, Food Chem., 2007, vol. 100, pp. 656–661.CrossRefGoogle Scholar
  33. 33.
    Yamasaki, H., Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo, Phil. Trans. R. Soc. Lond., 2000, vol. 355, pp. 1477–1488.CrossRefGoogle Scholar
  34. 34.
    Syrett, P.J., Nitrogen metabolism of microalgae, Can. Bull. Fish. Aquat. Sci., 1981, vol. 210, pp. 182–210.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • G. S. Minyuk
    • 1
  • E. S. Chelebieva
    • 1
  • I. N. Chubchikova
    • 1
  • N. V. Dantsyuk
    • 1
  • I. V. Drobetskaya
    • 1
  • E. G. Sakhon
    • 1
  • O. B. Chivkunova
    • 2
  • K. A. Chekanov
    • 2
  • E. S. Lobakova
    • 2
  • R. A. Sidorov
    • 3
  • A. E. Solovchenko
    • 2
    Email author
  1. 1.Kovalevsky Institute of Biology of Southern SeasSevastopolRussia
  2. 2.Biological facultyLomonosov State UniversityMoscowRussia
  3. 3.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations