Advertisement

Russian Journal of Plant Physiology

, Volume 63, Issue 3, pp 338–348 | Cite as

Dominant form of cationic peroxidase from sorghum roots

  • E. V. Dubrovskaya
  • N. N. Pozdnyakova
  • V. S. Grinev
  • A. Yu. Muratova
  • S. N. Golubev
  • A. D. Bondarenkova
  • O. V. Turkovskaya
Research Papers

Abstract

A dominant form of cationic peroxidase (PO-2) was isolated from sorghum (Sorghum bicolor L. Moench) roots and purified to electrophoretically homogeneous state. The enzyme is a monomer with mol wt of 49.7 kD. The optimum pH and the main catalytic constants (KM, V max, k cat) were determined for oxidation of the main substrates including Н2О2, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonate) (ABTS), 2,7-diaminofluorene, syringaldazine, 2,6-dimethoxyphenol, and o-dianisidine. The KM values increased in the sequence: H2O2 < 2,7-diaminofluorene < ABTS < o-dianisidine, whereas the maximum turnover number (93.9 s–1) was found for 2,7-diaminofluorene. Based on the analysis of molecular and catalytic properties of the enzyme, it was proven that PO-2 is a typical cationic plant peroxidase. Polycyclic aromatic hydrocarbons (phenanthrene, anthracene, fluorene), 2,2'-diphenic acid, and Ni ions had no significant influence on the activity of PO-2. The enzyme was inhibited by p-aminobenzoic acid, NaN3, 1-naphthol, 9,10-anthraquinone, and 9,10-phenanthrenequinone. In the presence of NaN3, 1-naphthol, and 9,10-phenanthrenequinone, a mixed competitive/noncompetitive type of inhibition was noted. The peroxidase PO-2 was found to oxidize synthetic anthraquinone dyes, phenanthrene, and some oxygenated derivatives of polycyclic aromatic hydrocarbons (9-phenanthrol; 1-naphthol; and 1-hydroxy-2-naphthoic, salicylic, and 2,2'-diphenic acids), which indirectly confirms the coupled plant–microbial metabolism of these compounds in the root zone of sorghum. The results indicate that 9,10-phenanthrenequinone and 2,2'-diphenic acid are the products of peroxidase-catalyzed oxidation of 9-phenanthrol.

Keywords

Sorghum bicolor cationic peroxidase catalytic properties polycyclic aromatic hydrocarbons (PAH) PAH metabolites anthraquinone dyes 

Abbreviations

AB62

Acid Blue 62

ABTS

2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate)

AR

alizarin red

BB22

Basic Blue 22

PAHs

polycyclic aromatic hydrocarbons

PO-2

cationic peroxidase

RB4

Reactive Blue 4

syringaldazine

4-hydroxy-3,5-dimethoxybenzaldehyde azine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kvesitadze, G.I., Khatisashvili, G.A., Sadunishvili, T.A., and Evstigneeva, Z.G., Metabolizm antropogennykh toksikantov v vysshikh rasteniyakh (Metabolism of Anthropogenic Toxicants in Higher Plants), Moscow: Nauka, 2005.Google Scholar
  2. 2.
    Chroma, L., Mackova, M., Kucerova, P., Wiesche, C., Burkhard, J., and Macek, T., Enzymes in plant metabolism of PCBs and PAHs, Acta Biotechnol., 2002, vol. 22, nos. 1–2, pp. 35–41.CrossRefGoogle Scholar
  3. 3.
    Schwab, A.P., Banks, M.K., and Arunachalam, M., Biodegradation of polycyclic aromatic hydrocarbons in rhizosphere soil, Bioremediation of Recalcitrant Organics, Hinchee, R.E., Anderson, D.B., and Hoeppel, R.E., Eds., Columbus, OH: Battelle, 1995, pp. 23–29.Google Scholar
  4. 4.
    Dubrovskaya, E.V., Polikarpova, I.O., Muratova, A.Yu., Pozdnyakova, N.N., Chernyshova, M.P., and Turkovskaya, O.V., Changes in physiological, biochemical, and growth parameters of sorghum in the presence of phenanthrene, Russ. J. Plant Physiol., 2014, vol. 61, pp. 529–536.CrossRefGoogle Scholar
  5. 5.
    Muratova, A., Pozdnyakova, N., Golubev, S., Wittenmayer, L., Makarov, O., Merbach, W., and Turkovskaya, O., Oxidoreductase activity of sorghum root exudates in a phenanthrene-contaminated environment, Chemosphere, 2009, vol. 74, pp. 1031–1036.CrossRefPubMedGoogle Scholar
  6. 6.
    Gazaryan, I.G., Hushpulian, D.M., and Tishkov, V.I., Properties of structure and mechanisms of peroxidase action in plants, Usp. Biol. Khim., 2006, vol. 46, pp. 303–322.Google Scholar
  7. 7.
    Dicko, M.H., Gruppen, H., Hihorst, R., Voragen, A.G.J., and van Berkel, W.J.H., Biochemical characterization of the major sorghum grain peroxidase, FEBS J., 2006, vol. 273, pp. 2293–2307.CrossRefPubMedGoogle Scholar
  8. 8.
    Smith, G.S., Johnston, C.M., and Cornforth, I.S., Comparison of nutrient solutions for growth of plants in sand culture, New Phytol., 1983, vol. 94, pp. 537–548.CrossRefGoogle Scholar
  9. 9.
    Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, pp. 680–685.CrossRefPubMedGoogle Scholar
  10. 10.
    Doson, R., Elliot, D., Elliot, U., and Jones, K., Data for Biochemical Research, Oxford: Clarendon Press, 1986.Google Scholar
  11. 11.
    Niku-Paavola, M.-L., Karhunen, E., Salola, P., and Raunio, V., Ligninolytic enzymes of the white rot fungus Phlebia radiata, Biochem. J., 1988, vol. 254, pp. 877–883.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Criquet, S., Joner, E., and Leyval, C., 2,7-Diaminofluorene is a sensitive substrate for detection and characterization of plant root peroxidase activities, Plant Sci., 2001, vol. 161, pp. 1063–1066.CrossRefGoogle Scholar
  13. 13.
    Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.CrossRefPubMedGoogle Scholar
  14. 14.
    Leonowicz, A. and Grzywnowicz, K., Quantitative estimation of laccase forms in some white rot fungi using syringaldazine as a substrate, Enzyme Microb. Tech., 1981, vol. 3, pp. 55–58.CrossRefGoogle Scholar
  15. 15.
    Martinez, M.J., Ruiz-Dueñas, F.J., Guillén, F., and Martinez, A.T., Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii, Eur. J. Biochem., 1996, vol. 237, pp. 424–432.CrossRefPubMedGoogle Scholar
  16. 16.
    Bartha, R. and Bordeleau, L., Cell-free peroxidases in soil, Soil Biol. Biochem., 1969, vol. 1, pp. 139–143.CrossRefGoogle Scholar
  17. 17.
    Wariishi, H., Valli, K., and Gold, M., Manganese (II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators, J. Biol. Chem., 1992, vol. 267, pp. 23688–23695.PubMedGoogle Scholar
  18. 18.
    Kulys, J., Vidziunaite, R., and Schneider, P., Laccasecatalyzed oxidation of naphthol in the presence of soluble polymers, Enzyme Microb. Tech., 2003, vol. 32, pp. 455–463.CrossRefGoogle Scholar
  19. 19.
    Pozdnyakova, N.N., Jarosz-Wilkolazka, A., Polak, J., Gra[cedilla]z, M., and Turkovskay, O.V., Decolourisation of anthraquinone- and anthracene-type dyes by versatile peroxidases from Bjerkandera fumosa and Pleurotus ostreatus D1, Biocatal. Biotransform., 2015, vol. 33, pp. 69–80, doi 10.3109/10242422.2015.1060227CrossRefGoogle Scholar
  20. 20.
    Xu, M., Guo, J., Zeng, G., Zhong, X., and Sun, G., Decolourization of anthraquinone dye by Shewanella decolorationis S12, Appl. Microb. Biotech., 2006, vol. 71, pp. 246–251.CrossRefGoogle Scholar
  21. 21.
    Ortiz de Montellano, P.R., David, S.K., Ator, M.A., and Tew, D., Mechanism-based inactivation of horseradish peroxidase by sodium azide. Formation of mesoazidoprotoporphyrin IX, Biochemistry, 1988, vol. 27, pp. 5470–5476.CrossRefGoogle Scholar
  22. 22.
    Wong, D.W.S., Structure and action mechanism of ligninolytic enzymes, Appl. Biochem. Biotechnol., 2009, vol. 157, pp. 174–209.CrossRefPubMedGoogle Scholar
  23. 23.
    Seregin, I.V., Kozhevnikova, A.D., Kazyumina, E.M., and Ivanov, V.B., Nickel toxicity and distribution in maize roots, Russ. J. Plant Physiol., 2003, vol. 50, pp. 711–718.CrossRefGoogle Scholar
  24. 24.
    Liang, G.H., Lee, K.C., Chung, K., Liang, Y.T., and Cunningham, B.A., Regulation of intermodal length by peroxidase enzymes in grain sorghum, Theor. Appl. Genet., 1977, vol. 50, pp. 137–146.PubMedGoogle Scholar
  25. 25.
    Omidiji, O., Okpuzor, J., and Otubu, O., Peroxidase activity of germinating grains: effect of some cations, J. Sci. Food Agric., 2002, vol. 82, pp. 1881–1885.CrossRefGoogle Scholar
  26. 26.
    Nwanguma, B.C. and Eze, M.O., Heat sensitivity, optimum pH and changes in activity of sorghum peroxidase during malting and mashing, J. Inst. Brew., 1995, vol. 101, pp. 275–276.CrossRefGoogle Scholar
  27. 27.
    Diao, M., Kone, O.H., Ouedraogo, N., Bayili, R.G., Bassole, I.H.N., and Dicko, M.H., Comparison of peroxidase activities from Allium sativum, Ipomoea batatas, Raphanus sativus and Sorghum bicolor grown in Burkina Faso, Afr. J. Biochem. Res., 2011, vol. 5, no. 4, pp. 124–128.Google Scholar
  28. 28.
    Karim, Z. and Husain, Q., Removal of anthracene from polluted water by immobilized peroxidase from Momordica charantia in batch process as well as in a continuous spiral-bed reactor, J. Mol. Catal. B: Enzym., 2010, vol. 66, nos. 3–4, pp. 302–310.CrossRefGoogle Scholar
  29. 29.
    Kraus, J.J., Munir, I.Z., McEldoon, J.P., Clark, D.S., and Dordick, J.S., Oxidation of polycyclic aromatic hydrocarbons catalyzed by soybean peroxidase, Appl. Biochem. Biotechnol., 1999, vol. 80, pp. 221–230.CrossRefGoogle Scholar
  30. 30.
    Günther, T., Sack, U., Hofrichter, M., and Lätz, M., Oxidation of PAH and PAH-derivatives by fungal and plant oxidoreductases, J. Basic Microbiol., 1998, vol. 38, pp. 113–122.CrossRefGoogle Scholar
  31. 31.
    Islam, A.K.M.M., Lee, S.E., and Kim, J.E., Enhanced enzymatic transformation of 1-naphthol in the presence of catechol by peroxidase, J. Korean Soc. Appl. Biol. Chem., 2014, vol. 57, pp. 209–215.CrossRefGoogle Scholar
  32. 32.
    Pozdnyakova, N.N., Involvement of the ligninolytic system of white-rot and litter-decomposing fungi in the degradation of polycyclic aromatic hydrocarbons, Biotechnol. Res. Int., p. 2012: ID 243217.Google Scholar
  33. 33.
    Husain, Q., Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: a review, Rev. Environ. Sci. Biotechnol., 2010, vol. 9, pp. 117–140.CrossRefGoogle Scholar
  34. 34.
    Nouren, S. and Bhatti, H.N., Mechanistic study of degradation of basic violet 3 by Citrus limon peroxidase and phytotoxicity assessment of its degradation products, Biochem. Eng. J., 2015, vol. 95, pp. 9–19.CrossRefGoogle Scholar
  35. 35.
    Bagirova, N.A., Shekhovtsova, T.N., Shopova, E.A., and van Huystee, R.B., Enzymatic determination of α- and β-naphthols using peanut peroxidase, Mendeleev Commun., 1998, vol. 8, no. 4, pp. 155–156.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. V. Dubrovskaya
    • 1
  • N. N. Pozdnyakova
    • 1
  • V. S. Grinev
    • 1
  • A. Yu. Muratova
    • 1
  • S. N. Golubev
    • 1
  • A. D. Bondarenkova
    • 1
  • O. V. Turkovskaya
    • 1
  1. 1.Institute of Biochemistry and Physiology of Plants and MicroorganismsRussian Academy of SciencesSaratovRussia

Personalised recommendations