Advertisement

Russian Journal of Plant Physiology

, Volume 63, Issue 1, pp 124–131 | Cite as

Morphological changes and increase of resistance to oxidative stress by overexpression of the LebZIP2 gene in Nicotiana benthamiana

  • E. S. Seong
  • J. H. Yoo
  • N. J. Kim
  • J. H. Choi
  • J. G. Lee
  • B. K. Ghimire
  • I. M. Chung
  • C. Y. Yu
Research Papers

Abstract

The tomato bZIP2-encoding gene was inserted into the Nicotiana benthamiana genome using Agrobacterium-mediated transformation to characterize resistance to oxidative stress and two herbicides, glyphosate and paraquat. We produced transgenic tobacco plants using the LebZIP2 gene, which were then utilized to examine salt stress and herbicide resistance through oxidative mechanisms. Transgenic LebZIP2-overexpressing plants were examined using specific primers for selection marker genes (PCR using genomic DNA) and target genes (RT-PCR). Based on microscopic examination, we observed an increase in leaf thickness and cell number in transgenic plants. The electrolyte leakage of leaves suggested that LebZIP2-overexpressing lines were weak tolerant to NaCl stress and resistant to methyl viologen. During our analysis, transgenic lines were exposed to different herbicides. Transgenic plants showed an increased tolerance based on visual injury, as well as an increased biomass. Based on these results, the LebZIP2 gene may be involved in oxidative stress tolerance and cell development in plants.

Keywords

Nicotiana benthamiana LebZIP2 oxidative stress NaCl biomass methyl viologen glyphosate paraquat 

Abbreviations

bZIP

basic region/leucine zipper

MV

methyl viologen

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Seong, E.S., Kwon, S.S., Ghimire, B.K., Yu, C.Y., Cho, D.H., Lim, J.D., Kim, K.S., Heo, K., Lim, E.S., Chung, I.M., Kim, M.J., and Lee, Y.S., LebZIP2 induced by salt and drought stress and transient overexpression by Agrobacterium, BMB Rep., 2008, vol. 41, pp. 693–698.CrossRefPubMedGoogle Scholar
  2. 2.
    Shinozaki, K. and Yamaguchi-Shinozaki, K., Gene networks involved in drought stress response and tolerance, J. Exp. Bot., 2007, vol. 58, pp. 221–227.CrossRefPubMedGoogle Scholar
  3. 3.
    Seki, M., Ishida, J., Narusaka, M., Fujita, M., Nanjo, T., Umezawa, T., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., et al., Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a fulllength cDNA microarray, Plant J., 2002, vol. 31, pp. 279–292.CrossRefPubMedGoogle Scholar
  4. 4.
    Zhu, J.K., Salt and drought stress signal transduction in plants, Annu. Rev. Plant Biol., 2002, vol. 53, pp. 247–273.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., and Yamaguchi-Shinozaki, K., Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions, Proc. Natl. Acad. Sci. USA., 2000, vol. 97, pp. 11632–11637.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Wingender, E., Chen, X., Fricke, E., Geffers, R., Hehl, R., Liebich, I., Krull, M., Matys, V., Michael, H., Ohnh–user, R., Pr–ss, M., Schacherer, F., Thiele, S., and Urbach, S., The TRANSFAC system on gene expression regulation, Nucleic Acids Res., 2001, vol. 29, pp. 281–283.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Schindler, U., Menkens, A.E., Beckmann, H., Ecker, J.R., and Cashmore, A.R., Heterodimerization between light-regulated and ubiquitously expressed Arabidopsis GBF bZIP proteins, EMBO J., 1992, vol. 11, pp. 1261–1273.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Vettore, A.L., Yunes, J.A., Neto, G., Silva, M.J., Arruda, P., and Leite, A., The molecular and functional characterization of an Opaque2 homologue gene from Coix and a new classification of plant bZIP proteins, Plant Mol. Biol., 1998, vol. 36, pp. 249–263.CrossRefPubMedGoogle Scholar
  9. 9.
    Jakoby, M., Weisshaar, B., Droge-Laser, W., VicenteCarbajosa, J., Tiedemann, J., Kroj, T., and Parcy, F., bZIP transcription factors in Arabidopsis, Trends Plant Sci., 2002, vol. 7, pp. 106–111.CrossRefPubMedGoogle Scholar
  10. 10.
    Walsh, J., Waters, C.A., and Freeling, M., The maize gene liguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade–sheath boundary, Genes Dev., 1998, vol. 12, pp. 208–218.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Chuang, C.F., Running, M.P., Williams, R.W., and Meyerowitz, E.M., The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana, Genes Dev., 1999, vol. 13, pp. 334–344.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Hellens, R.P., Edwards, E.A., Leyland, N.R., Bean, S., and Mullineaux, P.M., pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation, Plant Mol. Biol., 2000, vol. 42, pp. 819–832.CrossRefPubMedGoogle Scholar
  13. 13.
    Shure, M., Wessler, S., and Fedoroff, N., Molecular identification and isolation of the Waxy locus in maize, Cell., 1983, vol. 35, pp. 225–233.CrossRefPubMedGoogle Scholar
  14. 14.
    Yi, S.Y., Kim, J.H., Joung, Y.H., Lee, S., Kim, W.T., Yu, S.H., and Choi, D., The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis, Plant Physiol., 2004, vol. 136, pp. 2862–2874.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1989.Google Scholar
  16. 16.
    Ogaya, A.R., Lioren, L., and Pe–uelas, J., Density and length of stomatal and epidermal cells in–living fossil–trees grown under elevated CO2 and a polar light regime, Acta Oecol., 2011, vol. 37, pp. 381–385.CrossRefGoogle Scholar
  17. 17.
    Shen, B., Jensen, R.G., and Bohnert, H.J., Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts, Plant Physiol., 1997, vol. 113, pp. 1177–1183.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Warren, G., McKown, R., Marin, A.L., and Teutonico, R., Isolation of mutations affecting the development of freezing tolerance in Arabidopsis thaliana (L.) Heynh, Plant Physiol.., 1996, vol. 111, pp. 1011–1019.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Wang, J., Li, Y., and Liang, C., Recovery of transgenic plants by pollen-mediated transformation in Brassica juncea, Transgenic Res., 2008, vol. 17, pp. 417–424.CrossRefPubMedGoogle Scholar
  20. 20.
    Yang, O., Popova, O.V., S–thoff, U., L–king, I., Dietz, K.J., and Golldack, D., The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance, Gene., 2009, vol. 436, pp. 45–55.CrossRefPubMedGoogle Scholar
  21. 21.
    Carles, C., Bies-Etheve, N., Aspart, L., Leon-Kloosterziel, K.M., Koornneef, M., Echeverria, M., and Delseny, M., Regulation of Arabidopsis thaliana Em genes: role of ABI5, Plant J., 2002, vol. 30, pp. 373–383.CrossRefPubMedGoogle Scholar
  22. 22.
    Xiang, Y., Tang, N., Du, H., Ye, H., and Xiong, L., Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice, Plant Physiol., 2008, vol. 148, pp. 1938–1952.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Liao, Y., Zou, H.F., Wei, W., Hao, Y.J., Tian, A.G., Huang, J., Liu, Y.F., Zhang, J.S., and Chen, S.Y., Soybean GmbZIP44, GmbZIP62, and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis, Planta., 2008, vol. 228, pp. 225–240.CrossRefPubMedGoogle Scholar
  24. 24.
    Aguirre, J., Rios-Momberg, M., Hewitt, D., and Hansberg, W., Reactive oxygen species and development in microbial eukaryotes, Trends Microbiol., 2005, vol. 13, pp. 111–118.CrossRefPubMedGoogle Scholar
  25. 25.
    Romano, P.G., Horton, P., and Gray, J.E., The Arabidopsis cyclophilin gene family, Plant Physiol., 2004, vol. 134, pp. 1268–1282.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Kidner, C.A. and Martienssen, R.A., The role of ARGONAUTE1 (AGO1) in meristem formation and identity, Dev. Biol., 2005, vol. 280, pp. 504–517.CrossRefPubMedGoogle Scholar
  27. 27.
    Silveria, A.B., Gauer, L., Tomaz, J.P., Cardoso, P.R., Carmello-Guerreiro, S., and Vincentz, M., The Arabidopsis AtbZIP9 protein fused to the VP16 transcriptional activation domain alters leaf and vascular development, Plant Sci., 2007, vol. 172, pp. 1148–1156.CrossRefGoogle Scholar
  28. 28.
    Fukazawa, J., Sakai, T., Ishida, S., Yamaguchi, I., Kamiya, Y., and Takahashi, Y., Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins, Plant Cell., 2000, vol. 12, pp. 901–915.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Asada, K., The water–water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999, vol. 50, pp. 601–639.CrossRefPubMedGoogle Scholar
  30. 30.
    Ji, X., Liu, G., Liu, Y., Zheng, L., Nie, X., and Wang, Y., The bZIP protein from Tamarix hispida, ThbZIP1, is ACGT elements binding factor that enhances abiotic stress signaling in transgenic Arabidopsis, BMC Plant Biol., 2013, vol. 13, p. 151. doi 10.1186/1471222913-151PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Montibus, M., Ducos, C., Bonnin-Verdal, M.N., Bormann, J., Ponts, N., Richard-Forget, F., and Barreau, C., The bZIP transcription factor Fgap1 mediates oxidative stress response and trichothecene biosynthesis but not virulence in Fusarium graminearum, PLoS One., 2013, vol. 8, p. e83377. doi 10.1371/journalpone.0083377PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Nagata, R.T., Dusky, J.A., Ferl, R.J., Torres, A.C., and Cantliffe, D.J., Evaluation of glyphosate resistance in transgenic lettuce, J. Am. Soc. Hort. Sci., 2000, vol. 125, pp. 669–672.Google Scholar
  33. 33.
    Romero, D.M., Rios de Molina, M.C., and Juarez, A.B., Oxidative stress induced by a commercial glyphosate formulation in a tolerant strain of Chlorella kessleri, Ecotoxicol. Environ. Saf., 2011, vol. 74, pp. 741–747.CrossRefPubMedGoogle Scholar
  34. 34.
    Tukaj, S. and Tukaj, Z., Distinct chemical contaminants induce the synthesis of Hsp70 proteins in green microalgae Desmodesmus subspicatus: heat pretreatment increases cadmium resistance, J. Therm. Biol., 2010, vol. 35, pp. 239–244.CrossRefGoogle Scholar
  35. 35.
    Bradshaw, L.D., Padgette, S.R., Kimball, S.K., and Wells, B.H., Perspectives on glyphosate resistance, Weed Tech., 1997, vol. 11, pp. 189–198.Google Scholar
  36. 36.
    Deak, M., Donn, G., Feher, A., and Dudits, D., Dominant expression of a gene amplification-related herbicide resistance in Medicago cell hybrids, Plant Cell Rep., 1988, vol. 7, pp. 158–161.CrossRefPubMedGoogle Scholar
  37. 37.
    Lermontova, I. and Grimm, B., Overexpression of plastidic protoporphyrinogen IX oxidase leads to resistance to the diphenylether herbicide aciflourfen, Plant Physiol., 2000, vol. 122, pp. 75–83.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. S. Seong
    • 1
  • J. H. Yoo
    • 2
  • N. J. Kim
    • 2
  • J. H. Choi
    • 2
  • J. G. Lee
    • 3
  • B. K. Ghimire
    • 4
  • I. M. Chung
    • 4
  • C. Y. Yu
    • 2
  1. 1.Bioherb Research InstituteKangwon National UniversityChuncheonSouth Korea
  2. 2.Department of Bioconvergence Science and Technology, College of Agriculture and Life ScienceKangwon National UniversityChuncheonSouth Korea
  3. 3.Hwajin CosmeticsHongcheonSouth Korea
  4. 4.Department of Applied BioscienceKonkuk UniversitySeoulSouth Korea

Personalised recommendations