Advertisement

Russian Journal of Plant Physiology

, Volume 62, Issue 6, pp 823–829 | Cite as

Differences in photosynthesis and terpene content in leaves and roots of wild-type and transgenic Arabidopsis thaliana plants

  • J. S. BlanchEmail author
  • J. Peñuelas
  • J. Llusià
  • J. Sardans
  • S. M. Owen
Research Papers
  • 133 Downloads

Abstract

We investigated the hypotheses that two different varieties of Arabidopsis thaliana show differences in physiology and terpene production. The two varieties of A. thaliana used in this study were wild-type (WT) and transgenic line (CoxIV-FaNES I) genetically modified to emit nerolidol with linalool/nerolidol synthase (COX). Photosynthetic rate, electron transport rate, fluorescence, leaf volatile terpene contents and root volatile terpene contents were analyzed. For both types, we found co-eluting α-pinene+β-ocimene, limonene, and humulene in leaves; and in the roots we found co-eluting α-pinene+β-ocimene, sabinene+β-pinene, β-myrcene, limonene, and humulene. At the end of the growing cycle, COX plants tended to have lower pools of terpene compounds in their leaves, with 78.6% lower photosynthesis rates and 30.8% lower electron transport rates, compared with WT plants at that time. The maximal photochemical efficiency F v/F m was also significantly lower (25.5%) in COX plants, indicating that these varieties were more stressed than WT plants. However, COX plants had higher (239%) root terpene contents compared to WT plants. COX plants appear to favor root production of volatile terpenes rather than leaf production. Thus we conclude that there were significant differences between COX and WT plants in terms of terpenoid pools, stress status and physiology.

Keywords

Arabidopsis thaliana FaNES I leaf terpene contents root terpene contents photosynthesis 

Abbreviations

A

CO2 uptake

COX

transgenic line (CoxIV-FaNES I)

ETR

electron transport rate

Fv/Fm

maximum photochemical efficiency of PSII

F/Fm

actual photochemical efficiency of PSII

gs

stomatal conductance

TPSs

terpene synthases

VOCs

volatile organic compounds

WT

wild-type

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kesselmeier, J. and Staudt, M., Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology, J. Atmos. Chem., 1999, vol. 33, pp. 23–88.CrossRefGoogle Scholar
  2. 2.
    Owen, S.M. and Peñuelas, J., Opportunistic emissions of volatile isoprenoids, Trends Plant Sci., 2005, vol. 10, pp. 420–426.CrossRefPubMedGoogle Scholar
  3. 3.
    Penuelas, J. and Llusia, J., Bvocs: plant defense against climate warming? Trends Plant Sci., 2003, vol. 8, pp. 105–109.CrossRefPubMedGoogle Scholar
  4. 4.
    Pichersky, E. and Gershenzon, J., The formation and function of plant volatiles: perfumes for pollinator attraction and defense, Curr. Opin. Plant Biol., 2002, vol. 5, pp. 237–243.CrossRefPubMedGoogle Scholar
  5. 5.
    Peñuelas, J., Ribas-Carbo, M., and Giles, L., Effects of allelochemicals on plant respiration and oxygen isotope fractionation by the alternative oxidase, J. Chem. Ecol., 1996, vol. 22, pp. 801–805.CrossRefPubMedGoogle Scholar
  6. 6.
    Chameides, W.L., Lindsay, R.W., Richardson, J., and Kiang, C.S., The role of biogenic hydrocarbons in urban photochemical smog–Atlanta as a case-study, Science, 1988, vol. 241, pp. 1473–1475.CrossRefPubMedGoogle Scholar
  7. 7.
    Janson, R.W., Monoterpene emissions from Scots pine and Norwegian spruce, J. Geophys. Res., 1993, vol. 98, pp. 2839–2850.CrossRefGoogle Scholar
  8. 8.
    Asensio, D., Peñuelas, J., Filella, I., and Llusià, J., Online screening of soil VOCs exchange responses to moisture, temperature and root presence, Plant Soil, 2007, vol. 291, pp. 249–261.CrossRefGoogle Scholar
  9. 9.
    Asensio, D., Owen, S.M., Llusià, J., and Peñuelas, J., The distribution of volatile isoprenoids in the soil horizons around Pinus halepensis trees, Soil Biol. Biochem., 2008, vol. 40, pp. 2937–2947.CrossRefGoogle Scholar
  10. 10.
    Rasmann, S., Kollner, T.G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J., and Turlings, T.C.J., Recruitment of entomopathogenic nematodes by insect damaged maize roots, Nature, 2005, vol. 434, pp. 732–737.CrossRefPubMedGoogle Scholar
  11. 11.
    Aharoni, A., Giri, A.P., Deuerlein, S., Griepink, F., de Kogel, W.J., Verstappen, F.W.A., Verhoeven, H.A., Jongsma, M.A., Schwab, W., and Bouwmeester, H.J., Terpenoid metabolism in wild-type and transgenic Arabidopsis plants, Plant Cell, 2003, vol. 15, pp. 2866–2884.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Chen, F., Tholl, D., D’Auria, J.C., Farooq, A., Pichersky, E., and Gershenzon, J., Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers, Plant Cell, 2003, vol. 2, pp. 481–494.CrossRefGoogle Scholar
  13. 13.
    Aubourg, S., Lecharny, A., and Bohlmann, J., Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana, Mol. Genet. Genomics, 2002, vol. 267, pp. 730–745.CrossRefPubMedGoogle Scholar
  14. 14.
    Tholl, D., Chen, F., Petri, J., Gershenzon, J., and Pichersky, E., Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers, Plant J., 2005, vol. 42, pp. 757–771.CrossRefPubMedGoogle Scholar
  15. 15.
    Aharoni, A., Jongsma, M.A., Kim, T.Y., Ri, M.B., Giri, A.P., Verstappen, F.W.A., Schwab, W., and Bouwmeester, H.J., Metabolic engineering of terpenoid biosynthesis in plants, Phytochem. Rev., 2006, vol. 5, pp. 49–58.CrossRefGoogle Scholar
  16. 16.
    Huang, M., Abel, C., Sohrabi, R., Petri, J., Haupt, I., Cosimano, J., Gershenzon, J., and Tholl, D., Variation of herbivore-induced volatile terpenes among Arabidopsis ecotypes depends on allelic differences and subcellular targeting of two terpene synthases, TPS02 and TPS03, Plant Physiol., 2010, vol. 153, pp. 1293–1310.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Steeghs, M., Bais, H.P., de Gouw, J., Goldan, P., Kuster, W., Northway, M., Fall, R., and Vivanco, J.M., Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis, Plant Physiol., 2004, vol. 135, pp. 47–58.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Juenger, T.E., Sen, S., Bray, E., Stahl, E., Wayne, T., McKay, J., and Richards, J.H., Exploring genetic and expression differences between physiologically extreme ecotypes: comparative genomic hybridization and gene expression studies of Kas-1 and Tsu-1 accessions of Arabidopsis thaliana, Plant Cell Environ., 2010, vol. 33, pp. 1268–1284.CrossRefPubMedGoogle Scholar
  19. 19.
    Kappers, I.F., Aharoni, A., van Herpen, T.W.J.M., Luckerhoff, L.L.P., Dicke, M., and Bouwmeester, H.J., Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis, Science, 2005, vol. 309, pp. 2070–2072.CrossRefPubMedGoogle Scholar
  20. 20.
    Gibeau, D.M., Hulett, J., Cramer, G.R., and Seemann, J.R., Maximal biomass of Arabidopsis thaliana using a simple, low-maintenance hydroponic method and favorable environmental conditions, Plant Physiol., 1997, vol. 115, pp. 317–319.CrossRefGoogle Scholar
  21. 21.
    Genty, B., Briantais, J.M., and Baker, N.R., The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence, Biochim. Biophys. Acta, 1989, vol. 990, pp. 87–92.CrossRefGoogle Scholar
  22. 22.
    Blanch, J.S., Sampedro, L., Llusià, J., Moreira, X., Zas, R., and Peñuelas, J., Effects of phosphorus availability and genetic variation of leaf terpene content and emission rate in Pinus pinaster seedlings susceptible and resistant to the pine weevil, Hylobius abietis, J. Chem. Ecol., 2012, vol. 14, pp. 66–72.Google Scholar
  23. 23.
    van Poecke, R.M.P., Posthumus, M.A., and Dicke, M., Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis, J. Chem. Ecol., 2001, vol. 27, pp. 1911–1928.CrossRefPubMedGoogle Scholar
  24. 24.
    Nagegowda, D.A., Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation, FEBS Lett., 2010, vol. 384, pp. 2965–2973.CrossRefGoogle Scholar
  25. 25.
    Meir, S., Reuveni, Y., Rosenberger, I., Davidson, H., and Philosophhadas, S., Improvement of the postharvest keeping quality of cut flowers and cuttings by application of water-soluble antioxidants, ISHS Acta Hortic., 1994, vol. 368, pp. 355–364.CrossRefGoogle Scholar
  26. 26.
    Hedtke, B., Meixner, M., Gillandt, S., Richter, E., Borner, T., and Weihe, A., Green fluorescent protein as a marker to investigate targeting of organellar RNA polymerases of higher plants in vivo, Plant J., 1999, vol. 17, pp. 557–561.CrossRefPubMedGoogle Scholar
  27. 27.
    Beemster, G.T.S., de Vusser, K., de Tavernier, E., de Bock, K., and Inzé, D., Variation in growth rate between Arabidopsis ecotypes is correlated with cell division and A-type cyclin-dependent kinase activity, Plant Physiol., 2002, vol. 129, pp. 854–864.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Oxborough, K. and Baker, N.R., Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components–calculation of qP and without measuring Photosynth. Res., 1997, vol. 54, pp. 135–142.Google Scholar
  29. 29.
    van Dam, N.M. and van der Meijden, E., A role for metabolomics in plant ecology, in Biology of Plant Metabolomics, Hall, R.D., Ed., Chichester, UK: Wiley, 2011, pp. 87–107.Google Scholar
  30. 30.
    Basyuni, M., Baba, S., Inafuku, M., Iwasaki, H., Kinjo, K., and Oku, H., Expression of terpenoid synthase mRNA and terpenoid contents in salt stressed mangrove, J. Plant Res., 2009, vol. 166, pp. 1786–1800.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • J. S. Blanch
    • 1
    • 2
    Email author
  • J. Peñuelas
    • 1
    • 2
  • J. Llusià
    • 1
    • 2
  • J. Sardans
    • 1
    • 2
  • S. M. Owen
    • 1
    • 2
    • 3
  1. 1.CSIC, Global Ecology UnitCREAF-CSIC-UABCataloniaSpain
  2. 2.CREAFCataloniaSpain
  3. 3.Centre for Ecology and Hydrology (CEH)PenicuikUK

Personalised recommendations