Advertisement

Russian Journal of Plant Physiology

, Volume 62, Issue 2, pp 229–236 | Cite as

Effects of high salinity on physiological and anatomical indices in the early stages of Populus euphratica growth

  • V. D. Rajput
  • Y. Chen
  • M. Ayup
Research Papers

Abstract

The effects of salinity stress on stomatal aperture and density, xylem vessels, the activities of antioxidant enzymes, such as superoxide dismutase (SOD) and peroxidase (POD), and xylem embolism (PLC values) in Populus euphratica in the arid ecosystem of China. Pot experiment was conducted at different concentrations of salt (50, 100, 150, and 200 mM NaCl) contained in the irrigation water used for 3 months The POD activity increased with the increase in the severity of NaCl stress, but SOD activity was varied at different levels of salt. Results indicated that salt treatment reduced stomatal aperture and leaf photosynthetic capacity. However, the significant reduction in the stomatal area, in the length of stomata openings and an increase in stomata density were noticed. Salinity stress affected water transport, which reduced native PLC value, whereas xylem vessel area was also decreased. Presented results open the possibility of genetic improvement for selecting the high salt-tolerant of Populus spp.to reclaim salinized lands.

Keywords

Populus euphratica PLC value salinity POD SOD xylem anatomy 

Abbreviations

POD

peroxidase

SOD

superoxide dismutase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhuang, L., Li, W.H., Yuan, F., Gong, W.C., and Tian, Z.P., Ecological adaptation characteristics of Populus euphratica and Tamarix ramosissima leaf microstructures in the lower reaches of Tarim River, Acta Ecol. Sin., 2010, vol. 30, pp. 62–66.CrossRefGoogle Scholar
  2. 2.
    Hukin, D., Cochard, H., Dreyer, E., Thiec, D.L., and Bogeat-Triboulot, M.B., Cavitation vulnerability in roots and shoots: does Populus euphratica Oliv., a poplar from arid areas of central Asia, differ from other poplar species, J. Exp. Bot., 2005, vol. 56, pp. 2003–2010.CrossRefPubMedGoogle Scholar
  3. 3.
    Junghans, U., Polle, A., Düchting, P., Weiler, E., Kuhlman, B., Gruber, F., and Teichmann, T., Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology, Plant Cell Environ., 2006, vol. 29, pp. 1519–1531.CrossRefPubMedGoogle Scholar
  4. 4.
    Escalante-Pérez, M., Lautner, S., Nehls, U., Selle, A., Teuber, M., Schnitzler, J.P., Teichmann, T., Fayyaz, P., Hartung, W., Polle, A., Fromm, J., Hedrich, R., and Ache, P., Salt stress affects xylem differentiation of grey poplar (Populus × canescens), Planta, 2009, vol. 229, pp. 299–309.CrossRefPubMedGoogle Scholar
  5. 5.
    Chen, S. and Polle, A., Salinity tolerance of Populus, Plant Biol., 2010, vol. 12, pp. 317–333.CrossRefPubMedGoogle Scholar
  6. 6.
    Abbruzzese, G., Beritognolo, I., Muleo, R., Piazzai, M., Sabatti, M., Mugnozza, G.S., and Kuzminsky, E., Leaf morphological plasticity and stomatal conductance in three Populus alba L. genotypes subjected to salt stress, Environ. Exp. Bot., 2009, vol. 66, pp. 381–388.CrossRefGoogle Scholar
  7. 7.
    Meloni, D., Oliva, M., Martinez, C., and Cambraia, J., Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress, Environ. Exp. Bot., 2003, vol. 49, pp. 69–76.CrossRefGoogle Scholar
  8. 8.
    Ediga, A., Hemalatha, S., and Balaji, M., Effect of salinity stress on antioxidant defense system of two finger millet cultivars (Eleusine coracana (L.) Gaertn) differing in their sensitivity, Advan. Biol. Res., 2013, vol. 7, pp. 180–187.Google Scholar
  9. 9.
    Hishida, M., Ascencio-Valle, F., Fujiyama, H., Orduño-Cruz, A., Endo, T., and Larrinaga, Mayoral, J.á., Antioxidant enzyme responses to salinity stress of Jatropha curcas and J. cinerea at seedling stage, Russ. J. Plant Physiol., 2014, vol. 61, pp. 53–62.CrossRefGoogle Scholar
  10. 10.
    Ayup, M., Hao, X., Chen, Y., Li, W., and Su, R., Changes of xylem hydraulic efficiency and native embolism of Tamarix ramosissima Ledeb. seedlings under different drought stress conditions and after rewatering, S. Afr. J. Bot., 2012, vol. 78, pp. 75–82.CrossRefGoogle Scholar
  11. 11.
    Zhou, H., Chen, Y., Li, W., and Ayup, M., Xylem hydraulic conductivity and embolism in riparian plants and their responses to drought stress in desert of northwest China, Ecohydrology, 2013, vol. 6, pp. 984–993.CrossRefGoogle Scholar
  12. 12.
    Logan, B.A., Reactive oxygen species and photosynthesis, Antioxidants and Reactive Oxygen Species in Plants, Smirnoff, N., Ed., Oxford: Blackwell, 2005, pp. 250–267.Google Scholar
  13. 13.
    Ozden, M., Demirel, U., and Kahraman, A., Effect of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2, Sci. Hortic., 2009, vol. 119, pp. 163–168.CrossRefGoogle Scholar
  14. 14.
    Shigeru, S., Takahiro, I., and Masahiro, T., Regulation and function of ascorbate peroxidase isoenzymes, J. Exp. Bot., 2002, vol. 53, pp. 1305–1319.CrossRefGoogle Scholar
  15. 15.
    Awad, H., Barigah, T., Badel, E., Cochard, H., and Herbette, S., Poplar vulnerability to xylem cavitation acclimates to drier soil conditions, Physiol. Plant., 2010, vol. 139, pp. 280–288.PubMedGoogle Scholar
  16. 16.
    Trifilò, P., Raimondo, F., Nardini, A., Lo Gullo, M.A., and Salleo, S., Drought resistance of Ailanthus altissima: root hydraulics and water relations, Tree Physiol., 2004, vol. 24, pp. 107–114.CrossRefPubMedGoogle Scholar
  17. 17.
    Nardini, A. and Pitt, F., Drought resistance of Quercus pubescens as a function of root hydraulic conductance, xylem embolism and hydraulic architecture, New Phytol., 1999, vol. 143, pp. 485–493.CrossRefGoogle Scholar
  18. 18.
    Cinnirella, S., Magnani, F., Saracino, A., and Borghetti, M., Response of mature Pinus laricio plantation to a three-year restriction of water supply: structural and functional acclimation to drought, Tree Physiol., 2002, vol. 22, pp. 21–30.CrossRefPubMedGoogle Scholar
  19. 19.
    Plavcová, L. and Hacke, U.G., Phenotypic and developmental plasticity of xylem in hybrid poplar saplings subjected to experimental drought, nitrogen fertilization, and shading, J. Exp. Bot., 2012, vol. 63, pp. 6481–6491.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Fichot, R., Laurans, F., Monclus, R., Moreau, A., Pilate, G., and Brignolas, F., Xylem anatomy correlates with gas exchange, water-use efficiency and growth performance under contrasting water regimes: evidence from Populus deltoids × Populus nigra hybrids, Tree Physiol., 2009, vol. 29, pp. 1537–1549.CrossRefPubMedGoogle Scholar
  21. 21.
    Zwieniecki, M.A., Melcher, P.J., and Holbrook, N.M., Hydrogel control of xylem hydraulic resistance in plants, Science, 2001, vol. 291, pp. 1059–1062.CrossRefPubMedGoogle Scholar
  22. 22.
    Janz, D., Lautner, S., Wildhagen, H., Behnke, K., Schnitzler, J.P., Rennenberg, H., Fromm, J., and Polle, A., Salt stress induces the formation of a novel type of’ pressure wood’ in two Populus species, New Phytol., 2012, vol. 194, pp. 129–141.CrossRefPubMedGoogle Scholar
  23. 23.
    Ma, Y., Sawhney, V.K., and Steeves, T.A., Staining of paraffin-embedded plant material in safranin and fast green without prior removal of the paraffin, Can. J. Bot., 1993, vol. 71, pp. 996–999.Google Scholar
  24. 24.
    Jiang, Y. and Huang, B., Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses, J. Exp. Bot., 2001, vol. 52, pp. 341–349.CrossRefPubMedGoogle Scholar
  25. 25.
    Giannopolits, C.N. and Ries, S.K., Superoxide dismutases. I. Occurrence in higher plants, Plant Physiol., 1977, vol. 59, pp. 309–314.CrossRefGoogle Scholar
  26. 26.
    Chance, J. and Machly, S.K., Assay of catalase and peroxidases, Methods Enzymol., 1955, vol. 2, pp. 764–775.CrossRefGoogle Scholar
  27. 27.
    Sperry, J.S. and Tyree, M.T., Mechanism of water stress-induced xylem embolism, Plant Physiol., 1988, vol. 88, pp. 581–587.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Xiao, X.W., Xiao, X., and Yang, F., Adaptive responses to progressive drought stress in two Populus cathayana populations, Silva Fenn., 2008, vol. 42, pp. 705–719.CrossRefGoogle Scholar
  29. 29.
    Reddy, A.R., Chaitanya, K.V., and Vivekanandan, M., Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants, J. Plant Physiol., 2004, vol. 161, pp. 1189–1202.CrossRefGoogle Scholar
  30. 30.
    Pujia, Y., Hailiang, X., Wei, S., Shiwei, L., Qingqing, Z., Xinfeng, Z., Wei, Z., and Peng, Z., Physiological indexes of Populus euphratica leaves from different canopy positions in the lower reaches of Tarim River, Pak. J. Bot., 2012, vol. 44, pp. 933–938.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations