Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Reproductive properties of diatoms significant for their cultivation and biotechnology


Unicellular algae and diatoms (Bacillariophyta) in particular, have attracted increasing attention as the objects of biotechnology. Diatoms are known to produce mucopolysaccharides, fats, and fat-like substances suitable for production of biodiesel, unusual pigments (e. g., marennine), and nanosized siliceous structures. It should be noted that only few diatom species out of great number living on the Earth are used in biotechnology. About 100000 species of diatoms occur in nature. The use of diatoms in biotechnology is restricted by little-studied life cycle and biology of reproduction. This review summarizes data on biological properties of diatoms, which should be taken into account when they are used as the objects of culturing and particularly as clones.

This is a preview of subscription content, log in to check access.


  1. 1.

    Lebeau, T. and Robert, J.-M., Diatom cultivation and biotechnologically relevant products, Appl. Microbiol. Biotech, 2003, vol. 60, pp. 612–632.

  2. 2.

    Mata, T.M., Martins, A.A., and Caetano, N.S., Microalgae for biodiesel production and other applications: a review, Renew. Sust. Energy Rev., 2010, vol. 14, pp. 217–232.

  3. 3.

    Mostafa, S.S.M., Microalgal biotechnology: prospects and applications, Plant Sci., 2012, vol. 12, pp. 275–314.

  4. 4.

    Mann, D.G., The species concept in diatoms. Phycological reviews 18, Phycologia, 1999, vol. 38, pp. 437–495.

  5. 5.

    Mann, D.G. and Vanormelingen, P., An inordinate fondness? The number, distributions and origins of diatom species, J. Euk. Microbiol., 2013, vol. 60, pp. 414–420.

  6. 6.

    Björn, L.O. and Cronberg, G., Diatoms: their strange evolution and remarkable properties, Acta Biol. Slovenica, 2009, vol. 52, pp. 33–40.

  7. 7.

    Archibald, J.M., The puzzle of plastid evolution, Curr. Biol., 2009, vol. 19, pp. R81–R88.

  8. 8.

    Mock, T. and Medlin, L.K., Genomics and genetics of diatoms, Genomic Insights into the Biology of Alga. Advances in Botanical Research, Gwenaël Piganeau, Ed., 2012, vol. 64, pp. 245–284.

  9. 9.

    Moustafa, A., Beszteri, B., Maier, U.G., Bowler, C., Valentin, K., and Bhattacharya, D., Genomic footprints of a cryptic plastid endosymbiosis in diatoms, Science, 2009, vol. 324, pp. 1724–1726.

  10. 10.

    Bowler, C., Allen, A.E., Badger, J.H., Grimwood, J., Jabbari, K., Kuo, A., Maheswari, U., Martens, C., Maumus, F., Otillar, R.P., Rayko, E., Salamov, A., Vandepoele, K., Beszteri, B., Gruber, A., Heijde, M., Katinka, M., Mock, T., Valentin, K., Verret, F., Berges, J.A., Brownlee, C., Cadoret, J.-P., Chiovitti, A., Choi, C.J., Coesel, S., de Martino, A., Detter, J.C., Durkin, C., Falciatore, A., Fournet, J., Haruta, M., Huysman, M.J.J., Jenkins, B.D., Jiroutova, K., Jorgensen, R.E., Joubert, Y., Kaplan, A., Kröger, N., Kroth, P.G., la Roche, J., Lindquist, E., Lommer, M., Martin-Jézéquel, V., Lopez, P.J., Lucas, S., Mangogna, M., McGinnis, K., Medlin, L.K., Montsant, A., Oudot-Le Secq, M.-P., Napoli, C., Obornik, M., Schnitzler-Parker, M., Petit, J.-L., Porcel, B.M., Poulsen, N., Robison, M., Rychlewski, L., Rynearson, T.A., Schmutz, J., Shapiro, H., Siaut, M., Stanley, M., Sussman, M.R., Taylor, A.R., Vardi, A., von Dassow, P., Vyverman, W., Willis, A., Wyrwicz, L.S., Rokhsar, D.S., Weissenbach, J., Armbrust, E.V., Green, B.R., van de Peer, Y., and Grigoriev, I.V., The Phaeodactylum genome reveals the evolutionary history of diatom genomes, Nature, 2008, vol. 456, pp. 239–244.

  11. 11.

    Geitler, L., Reproduction and life history in diatoms, Bot. Rev., 1935, vol. 1, pp. 149–161.

  12. 12.

    Drebes, G., Sexuality, The Biology of Diatoms. Botanical Monographs 13, Werner, D., Ed., Oxford, UK: Blackwell, 1977, vol. 13, pp. 250–283.

  13. 13.

    Round, F.E., Crawford, R.M., and Mann, D.G., The Diatoms. Biology and Morphology of the Genera, Cambridge: Cambridge University Press, 1990.

  14. 14.

    Roshchin, A.M., Zhiznennye tsikly diatomovykh vodoroslei (The Life Cycles of Diatoms), Kiev: Nauk. dumka, 1994.

  15. 15.

    Edlund, M.B. and Stoermer, E.F., Ecological, evolutionary, and systematic significance of diatom life histories, J. Phycol., 1997, vol. 33, pp. 897–918.

  16. 16.

    Davidovich, N.A., Species specific sizes and size range of sexual reproduction in diatoms, Proc. 16th Int. Diatom Symp. (Athens and Aegean Islands, Aug. 25–Sept. 1, 2000), Athens: Univ. Athens, 2001, pp. 191–196.

  17. 17.

    Chepurnov, V.A., Mann, D.G., Sabbe, K., and Vyverman, W., Experimental studies on sexual reproduction in diatoms, Int. Rev. Cytol., 2004, vol. 237, pp. 91–154.

  18. 18.

    Amato, A., Diatom reproductive biology: living in a crystal cage, Int. J. Plant Reprod. Biol., 2010, vol. 2, pp. 1–10.

  19. 19.

    Mann, D.G., Size and sex, The Diatom World, Cellular Origin, Life in Extreme Habitats and Astrobiology, Seckbach, J., Kociolek, J.P., Eds., Dordrecht: Springer Science + Business Media, 2011, vol. 19, pp. 145–166.

  20. 20.

    Rose, D.T. and Cox, E.J., Some diatom species do not show a gradual decrease in cell size as they reproduce, Fundam. Appl. Limnol., 2013, vol. 182, pp. 117–122.

  21. 21.

    Pfitzer, E., Über den bau und Zeilteilung der Diatomeen, Bot. Z., 1869, vol. 27, pp. 774–776.

  22. 22.

    MacDonald, J.D., On the structure of the diatomaceous frustule, and its genetic cycle, Ann. Mag. Nat. Hist., Ser. 4, 1869, vol. 3, pp. 1–8.

  23. 23.

    Round, F.E., The problem of reduction of cell size during diatom cell division, Nova Hedwigia, 1972, vol. 23, pp. 291–303.

  24. 24.

    Geitler, L., Der formwechsel der pennaten Diatomeen (Kieselalgen), Arch. Protistenkunde, 1932, vol. 78, pp. 1–226.

  25. 25.

    Davidovich, N.A., Sexual heterogeneity in clones of Nitzschia longissima (Bréb.) Ralfs (Bacillariophyta), Algologiya, 2002, vol. 12, no. 3, pp. 279–289.

  26. 26.

    Davidovich, N.A., Inheritance of sex in obligate dioecious variety Nitzschia longissima (Bréb.) Ralfs (Bacillariophyta) under intraclonal reproduction, Algologiya, 2005, vol. 15, no. 4, pp. 385–398.

  27. 27.

    Davidovich, N.A. and Davidovich, O.I., Sexual reproduction and the system of hybridization in Tabularia tabulate (C. Agardh) Snoeijs (Bacillariophyta), Algologiya, 2010, vol. 20, no. 4, pp. 385–405.

  28. 28.

    Podunay, Yu.A., Davidovich, O.I., and Davidovich, N.A., Mating system and two types of gametogenesis in the fresh water diatom Ulnaria ulna (Bacillariophyta), Algologia, 2014, vol. 24, no. 1, pp. 3–19.

  29. 29.

    Davidovich, N.A., Kaczmarska, I., and Ehrman, J.M., The sexual structure of a natural population of the diatom Nitzschia longissima (Bréb.) Ralfs, Proc. 18th Int. Diatom Symp. (Miedzyzdroje, Poland, Sept. 2–7, 2004), Bristol: Biopress, 2006, pp. 27–40.

  30. 30.

    Kaczmarska, I., Ehrman, J.M., Moniz, M.B.J., and Davidovich, N., Phenotypic and genetic structure of interbreeding populations of the diatom Tabularia fasciculate (Bacillariophyta), Phycologia, 2009, vol. 48, pp. 391–403.

  31. 31.

    Chepurnov, V.A., Chaerle, P., Vanhoutte, K., and Mann, D.G., How to breed diatoms: examination of two species with contrasting reproductive biology, The Science of Algal Fuels: Phycology, Geology, Biophotonics, Genomics, and Nanotechnology. Cellular Origin, Life in Extreme Habitats and Astrobiology, Gordon, R., Seckbach, J., Eds., Dordrecht: Springer Science + Business Media, 2012, vol. 25, pp. 323–340.

  32. 32.

    Kociolek, J.P. and Stoermer, E.F., Chromosome numbers in diatoms: a review, Diatom Res., 1989, vol. 4, pp. 47–54.

  33. 33.

    Sedova, T.V., Kariologiya vodoroslei (Karyology of Algae), St. Petersburg: Nauka, 1996.

  34. 34.

    Mann, D.G., Patterns of sexual reproduction in diatoms, Proc. 12th Int. Diatom Symp. (Renesse, Netherlands, Aug. 30–Sept. 5, 1992), Belgium: Kluwer, 1993, vol. 1, pp. 11–20.

  35. 35.

    Davidovich, N.A., Kaczmarska, I., and Ehrman, J.M., Heterothallic and homothallic sexual reproduction in Tabularia fasciculate (Bacillariophyta), Fottea, 2010, vol. 10, pp. 251–266.

  36. 36.

    Geitler, L., Auxosporenbildung und systematik bei pennaten diatomeen und die cytologie von Cocconeissippen, Österr. Bot. Z., 1973, vol. 122, pp. 299–321.

  37. 37.

    Mizuno, M., Evolution of meiotic patterns of oogenesis and spermatogenesis in centric diatoms, Phycol. Res., 2006, vol. 54, pp. 57–64.

  38. 38.

    Mizuno, M., Evolution of centric diatoms inferred from patterns of oogenesis and spermatogenesis, Phycol. Res., 2008, vol. 56, pp. 156–165.

  39. 39.

    Chepurnov, V.A., Chaerle, P., Roef, L., Meirhaeghe, A., and Vanhoutte, K., Classical breeding in diatoms: scientific background and practical perspectives, The Diatom World, Cellular Origin, Life in Extreme Habitats and Astrobiology, Seckbach, J., Kociolek, J.P., Eds., Dordrecht: Springer Science + Business Media, 2011, vol. 19, pp. 171–194.

  40. 40.

    Roshchin, A.M. and Chepurnov, V.A., Dioecy and monoecy in the pennate diatoms (with reference to the centric taxa), Proc. 14th Int. Diatom Symp. (Tokyo, Japan, September 2–8, 1996), Koenigstein: Koeltz Sci. Books, 1999, pp. 241–261.

  41. 41.

    Apt, K.E., Grossman, A.R., and Kroth-Pancic, P.G., Stable nuclear transformation of the diatom Phaeodactylum tricornutum, Mol. Gen. Genet., 1996, vol. 252, pp. 572–579.

  42. 42.

    Poulsen, N., Chesley, P.M., and Kröger, N., Molecular genetic manipulation of the diatom Thalassiosira pseudonana (Bacillariophyceae), J. Phycol., 2006, vol. 42, pp. 1059–1065.

  43. 43.

    Poulsen, N., Berne, C., Spain, J., and Kröger, N., Silica immobilization of an enzyme through genetic engineering of the diatom Thalassiosira pseudonana, Angew. Chem., Int. Ed. Engl., 2007, vol. 46, pp. 1843–1846.

  44. 44.

    Neuville, D. and Daste, P., Observations préliminaires concernant l’auxosporulation chez la diatomée Navicula ostrearia (Gaillon) Bory en culture in vitro, C. R. Acad. Sci. (Paris), Série D, 1975, vol. 281, pp. 1753–1756.

  45. 45.

    Neuville, D. and Daste, P., Observations concernant les phases de l’auxosporulation chez la diatomée Navicula ostrearia (Gaillon) Bory en culture in vitro, C. R. Acad. Sci. (Paris), Serie D, 1979, vol. 288, pp. 1496–1498.

  46. 46.

    Davidovich, N.A., Mouget, J.-L., and Gaudin, P., Heterothallism in the pennate diatom Haslea ostrearia (Bacillariophyta), Eur. J. Phycol., 2009, vol. 44, pp. 251–261.

  47. 47.

    Davidovich, N.A., Photoregulation of sexual reproduction in Bacillariophyta (review), Algologiya, 2002, vol. 12, no. 2, pp. 259–272.

  48. 48.

    Mouget, J.-L., Gastineau, R., Davidovich, O., Gaudin, P., and Davidovich, N.A., Light is a key factor in triggering sexual reproduction in the pennate diatom Haslea ostrearia, FEMS Microbiol. Ecol., 2009, vol. 69, pp. 194–201.

  49. 49.

    Shorenko, K.I., Davidovich, O.I., and Davidovich, N.A., Taxonomy, reproduction and distribution in Nitzschia longissima (Bréb.) Grunow (Bacillariophyta), Algologiya, 2013, vol. 23, no. 2, pp. 113–137.

  50. 50.

    Hiltz, M., Bates, S.S., and Kaczmarska, I., Effect of light: dark cycles and cell apical length on the sexual reproduction of the pennate diatom Pseudo-nitzschia multiseries (Bacillariophyceae) in culture, Phycologia, 2000, vol. 39, pp. 59–66.

  51. 51.

    Armbrust, E.V., The life of diatoms in the world’s oceans, Nature, 2009, vol. 459, pp. 185–192.

  52. 52.

    Armbrust, E.V., Berges, J.A., Bowler, C., Green, B.R., Martinez, D., Putnam, N.H., Zhou, S.G., Allen, A.E., Apt, K.E., Bechner, M., Brzezinski, M.A., Chaal, B.K., Chiovitti, A., Davis, A.K., Demarest, M.S., Detter, J.C., Glavina, T., Goodstein, D., Hadi, M.Z., Hellsten, U., Hildebrand, M., Jenkins, B.D., Jurka, J., Kapitonov, V.V., Kröger, N., Lau, W.W., Lane, T.W., Larimer, F.W., Lippmeier, J.C., Lucas, S., Medina, M., Montsant, A., Obornik, M., Parker, M.S., Palenik, B., Pazour, G.J., Richardson, P.M., Rynearson, T.A., Saito, M.A., Schwartz, D.C., Thamatrakoln, K., Valentin, K., Vardi, A., Wilkerson, F.P., and Rokhsar, D.S., The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism, Science, 2004, vol. 306, pp. 79–86.

  53. 53.

    Li, S., Pan, K., Zhu, B., and Zhang, L., Nuclear transition between the conjunction cells of Phaeodactylum tricornutum Bohlin (Bacillariophyta), J. Ocean Univ. China, 2012, vol. 11, pp. 383–388.

  54. 54.

    Casteleyn, G., Chepurnov, V.A., Leliaert, F., Mann, D.G., Bates, S.S., Lundholm, N., Rhodes, L., Sabbe, K., and Vyverman, W., Pseudo-nitzschia pungens (Bacillariophyceae): a cosmopolitan diatom species? Harmful Algae, 2008, vol. 7, pp. 241–257.

  55. 55.

    Evans, K.M., Chepurnov, V.A., Sluiman, H.J., Thomas, S.J., Spears, B.M., and Mann, D.G., Highly differentiated populations of the freshwater diatom Sellaphora capitata suggest limited dispersal and opportunities for allopatric speciation, Protist, 2009, vol. 160, pp. 386–396.

  56. 56.

    Poulíková, A., Veselá, J., Neustupa, J., and Skaloud, P., Pseudocryptic diversity versus cosmopolitanism in diatoms: a case study on Navicula cryptocephala Kütz. (Bacillariophyceae) and morphologically similar taxa, Protist, 2010, vol. 161, pp. 353–369.

  57. 57.

    Vyverman, W., Verleyen, E., Sabbe, K., Vanhoutte, K., Sterken, M., Hodgson, D.A., Mann, D.G., Juggins, S., van de Vijver, B., Jones, V., Flower, R., Roberts, D., Chepurnov, V.A., Kilroy, C., Vanormelingen, P., and de Wever, A., Historical processes constrain patterns in global diatom diversity, Ecology, 2007, vol. 88, pp. 1924–1931.

  58. 58.

    Kooistra, W.H.C.F., Sarno, D., Balzano, S., Gu, H., Andersen, R.A., and Zingone, A., Global diversity and biogeography of Skeletonema species (Bacillariophyta), Protist, 2008, vol. 159, pp. 177–193.

  59. 59.

    Kulikovskiy, M.S., Lange-Bertalot, H., Metzeltin, D., and Witkowski, A., Lake Baikal: hotspot of endemic diatoms, Iconographia Diatomologica, 2012, vol. 23, pp. 7–608.

  60. 60.

    Kermarrec, L., Bouchez, A., Rimet, F., and Humbert, J.F., First evidence of the existence of semicryptic species and of a phylogeographic structure in the Gomphonema parvulum (Kützing) Kützing complex (Bacillariophyta), Protist, 2013, vol. 164, pp. 686–705.

  61. 61.

    Kulikovskiy, M.S. and Kuznetsova, I.V., Biogeografiya presnovodnyh Bacillariophyta. Osnovnye kontseptsii i podhody. (Biogeography of freshwater Bacillariophyta. 1. Basic concepts and approaches), Algologiya, 2014, vol. 24, no. 2, pp. 125–146.

  62. 62.

    Kulikovskiy, M.S. and Kociolek, J.P., The diatom genus Gomphonema Ehrenberg in lake Baikal. I. Morphology and taxonomic history of two endemic species, Nova Hedwigia, Beiheft, 2014, vol. 143, pp. 507–518.

  63. 63.

    Amato, A., Kooistra, W.H.C.F., Levialdi Ghiron, J.H., Mann, D.G., Pröschold, T., and Montresor, M., Reproductive isolation among sympatric cryptic species in marine diatoms, Protist, 2007, vol. 158, pp. 193–207.

  64. 64.

    Rimet, F., Trobajo, R., Mann, D.G., Kermarrec, L., Franc, A., Domaizon, I., and Bouchez, A., When is sampling complete? The effects of geographical range and marker choice on perceived diversity Nitzschia palea (Bacillariophyta), Protist, 2014, vol. 165, pp. 245–259.

Download references

Author information

Correspondence to N. A. Davidovich.

Additional information

Original Russian Text © N.A. Davidovich, O.I. Davidovich, Yu.A. Podunai, K.I. Shorenko, M.S. Kulikovskii, 2015, published in Fiziologiya Rastenii, 2015, Vol. 62, No. 2, pp. 167–175.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Davidovich, N.A., Davidovich, O.I., Podunai, Y.A. et al. Reproductive properties of diatoms significant for their cultivation and biotechnology. Russ J Plant Physiol 62, 153–160 (2015).

Download citation


  • Bacillariophyta
  • cultivation
  • clone
  • biology of reproduction