Advertisement

Russian Journal of Plant Physiology

, Volume 62, Issue 2, pp 262–269 | Cite as

Overexpression of DnWRKY29 in tobacco impaired plants tolerance to salt and drought stresses

  • X. Xu
  • C. Wang
  • X. Ma
  • Y. Pan
  • Q. Ying
  • H. Song
  • H. Wang
Research Papers

Abstract

One novel transcription factor gene DnWRKY29 was isolated from Dendrobium officinale, and its functions were identified by its overexpression in tobacco. Compared to the wild type (WT), the DnWRKY29 transgenic tobacco seeds and seedlings showed more sensitivity to salt and drought stresses. The seed germination rate, seedling root length, and fresh weight of transgenic tobacco were lower than in WT. The activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) in transgenic tobacco were decreased, and the content of malondialdehyde (MDA) in transgenic tobacco was increased. Moreover, the expression of DnWRKY29 was up-regulated in Dendrobium seedlings under salt and drought stresses, which was consistent with the function identified by its overexpression in tobacco, indicating that the up-regulation or overexpression of DnWRKY29 impaired plant tolerance to salt and drought stresses. These results provided a new insight to the low tolerance of Dendrobium seedlings to environmental change.

Keywords

Dendrobium stress transcription factor WRKY 

Abbreviations

CAT

catalase

POD

peroxidase

SOD

superoxide dismutase

WT

wild type

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lee, Y.H., Park, J.D., Baek, N.I., Kim, S.I., and Ahn, B.Z., In vitro and in vivo antitumoral phenanthrenes from the aerial parts of Dendrobium nobile, Planta Med., 1995, vol. 61, pp. 178–180.CrossRefPubMedGoogle Scholar
  2. 2.
    Wu, X., Shiroto, Y., Kishitani, S., Ito, Y., and Toriyama, K., Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter, Plant Cell Rep., 2009, vol. 28, pp. 21–30.CrossRefPubMedGoogle Scholar
  3. 3.
    Rushton, P.J., Somssich, I.E., Ringler, P., and Shen, Q.J., WRKY transcription factors, Trends Plant Sci., 2010, vol. 15, pp. 247–258.CrossRefPubMedGoogle Scholar
  4. 4.
    Mangelsen, E., Kilian, J., Berendzen, K.W., Kolukisaoglu, U.H., Harter, K., Jansson, C., and Wanke, D., Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots, BMC Genomics, 2008, vol. 9, p. 194.CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Liu, J.J. and Ekramoddoullah, A.K., Identification and characterization of the WRKY transcription factor family in Pinus monticola, Genome, 2009, vol. 52, pp. 77–88.CrossRefPubMedGoogle Scholar
  6. 6.
    Pandey, S.P. and Somssich, I.E., The role of WRKY transcription factors in plant immunity, Plant Physiol., 2009, vol. 150, pp. 1648–1655.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Song, Y., Ai, C.R., Jing, S.J., and Yu, D.Q., Research progress on function analysis of rice WRKY gene, Rice Sci., 2010, vol. 17, pp. 60–72.CrossRefGoogle Scholar
  8. 8.
    Lagace, M. and Matton, D.P., Characterization of a WRKY transcription factor expressed in late torpedostage embryos of Solanum chacoense, Planta, 2004, vol. 219, pp. 185–189.CrossRefPubMedGoogle Scholar
  9. 9.
    Jiang, W. and Yu, D., Arabidopsis WRKY2 transcription factor mediates seed germination and post-germination arrest of development by abscisic acid, BMC Plant Biol., 2009, vol. 22, pp. 994–996.Google Scholar
  10. 10.
    Chen, L.G., Zhang, L.P., and Yu, D.Q., Wounding-induced WRKY8 is involved in basal defense in Arabidopsis, Mol. Plant-Microbe Interact., 2010, vol. 23, pp. 558–565.CrossRefPubMedGoogle Scholar
  11. 11.
    Li, H., Xu, Y., Xiao, Y., Zhu, Z.G., Xie, X.Q., Zhao, H.Q., and Wang, Y.J., Expression and functional analysis of two genes encoding transcription factors, VpWRKY1 and VpWRKY2, isolated from Chinese wild Vitis pseudoreticulata, Planta, 2010, vol. 232, pp. 1325–1337.CrossRefPubMedGoogle Scholar
  12. 12.
    Miao, Y. and Zentgraf, U., A HECT E3 ubiquitin ligase negatively regulates Arabidopsis leaf senescence through degradation of the transcription factor WRKY53, Plant J., 2010, vol. 63, pp. 179–188.CrossRefPubMedGoogle Scholar
  13. 13.
    Ren, X.Z., Chen, Z.Z., Liu, Y., Zhang, H., Zhang, M., Liu, Q., Hong, X., Zhu, J.K., and Gong, Z., ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis, Plant J., 2010, vol. 63, pp. 417–429.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Liu, Q.L., Zhong, M., Li, S., Pan, Y.Z., Jiang, B.B., Jia, Y., and Zhang, H.Q., Overexpression of a chrysanthemum transcription factor gene, DgWRKY3, in tobacco enhances tolerance to salt stress, Plant Physiol. Biochem., 2013, vol. 69, pp. 27–33.CrossRefPubMedGoogle Scholar
  15. 15.
    Song, H.M., Fan, P.X., and Li, Y.X., Overexpression of AtHsp90 alters response to oxidative stress in transgenic Arabidopsis, Plant Mol. Biol. Rep., 2009, vol. 27, pp. 342–349.CrossRefGoogle Scholar
  16. 16.
    Qiu, Y.P. and Yu, D.Q., Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis, Environ. Exp. Bot., 2009, vol. 65, pp. 35–47.CrossRefGoogle Scholar
  17. 17.
    Tao, Z., Liu, H., Qiu, D., Zhou, Y., Li, X., Xu, C., and Wang, S., A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions, Plant Physiol., 2009, vol. 151, pp. 936–948.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Shimono, M., Sugano, S., Nakayama, A., Jiang, C.J., Ono, K., Toki, S., and Takatsuji, H., Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance, Plant Cell, 2007, vol. 19, pp. 2064–2076.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Zhou, Q.Y., Tian, A.G., Zou, H.F., Xie, Z.M., Lei, G., Huang, J., Wang, C.M., Wang, H.W., Zhang, J.S., and Chen, S.Y., Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants, Plant Biotech. J., 2008, vol. 6, pp. 486–503.CrossRefGoogle Scholar
  20. 20.
    Rushton, P.J., Macdonald, H., Huttly, A.K., Lazarus, C.M., and Hooley, R., Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of alpha-Amy2 genes, Plant Mol. Biol., 1995, vol. 29, pp. 691–702.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang, Z.L., Xie, Z., Zou, X., Casaretto, J., Ho, T.H., and Shen, Q.J., A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells, Plant Physiol., 2004, vol. 134, pp. 1500–1513.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Xie, Z., Zhang, Z.L., Zou, X., Huang, J., Ruas, P., Thompson, D., and Shen, Q.J., Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells, Plant Physiol., 2005, vol. 137, pp. 176–189.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Xie, Z., Zhang, Z.L., Zou, X., Yang, G., Komatsu, S., and Shen, Q.J., Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells, Plant J., 2006, vol. 46, pp. 231–242.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang, Z.L., Shin, M., Zou, X.L., Huang, J.Z., Ho, T.H., and Shen, Q.J., A negative regulator encoded by a rice WRKY gene represses both abscisic acid and gibberellins signaling in aleurone cells, Plant Mol. Biol., 2009, vol. 70, pp. 139–151.CrossRefPubMedGoogle Scholar
  25. 25.
    Jiang, Y. and Deyholos, M., Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses, Plant Mol. Biol., 2009, vol. 69, pp. 91–105.CrossRefPubMedGoogle Scholar
  26. 26.
    Hernandez, J.A., Ferrer, M.A., Jimenez, A., Barcelo, A.R., and Sevilla, F., Antioxidant systems and O2 /H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins, Plant Physiol., 2001, vol. 127, pp. 827–831.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • X. Xu
    • 1
  • C. Wang
    • 1
  • X. Ma
    • 1
  • Y. Pan
    • 1
  • Q. Ying
    • 1
  • H. Song
    • 1
  • H. Wang
    • 1
  1. 1.College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina

Personalised recommendations