Russian Journal of Plant Physiology

, Volume 61, Issue 1, pp 19–25 | Cite as

Mechanisms of bioadhesion of macrophytic algae

  • E. R. TarakhovskayaEmail author


During the evolution the benthic macrophytic algae developed effective mechanisms of bioadhesion enabling their attachment to almost any surface in the aqueous medium. The attachment of algal spores and zygotes includes two successive stages: the primary and the secondary (final) adhesion. Analysis of information on the composition of adhesive materials and attachment mechanisms in brown, green, and red marine macrophytes indicates that synthesis and release of adhesive substances by algal cells can be considered as a temporary intensification of cell wall synthesis. The structure of the primary adhesive material comprises a gel phase (alginate, ulvan, and agar gels) and a structuring component, i.e., a flexible network based on branched chains and/or rings of phenolic compounds, polysaccharides, or glycoproteins. Irreversible hardening of the primary adhesive material arises from phenol polymerization catalyzed by different peroxidases (brown algae) or from polymerization of glycoproteins comprising amino acids with phenolic residues (red algae). In parallel with these processes, covalent cross-links are being formed between the adhesive structural components and the gel phase polysaccharides. This results in the formation of the secondary adhesive and in eventual attachment of the organism to the substrate. The attachment mechanisms of benthic algae appear to have some features in common with the mechanisms of bioadhesion of marine invertebrates.


macrophytic algae bioadhesion attachment cell wall V-haloperoxidases phlorotannins pherophorin-like proteins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vreeland, V., Waite, J.H., and Epstein, L., Polyphenols and oxidases in substratum adhesion by marine algae and mussels, J. Phycol., 1998, vol. 34, pp. 1–8.CrossRefGoogle Scholar
  2. 2.
    Fletcher, R.L. and Callow, M.E., The settlement, attachment and establishment of marine algal spores, British Phycol. J., 1992, vol. 27, pp. 303–329.Google Scholar
  3. 3.
    Apple, M.E. and Harlin, M.M., Inhibition of tetraspore adhesion in Champia parvula (Rhodophyta), Phycologia, 1995, vol. 34, pp. 417–423.CrossRefGoogle Scholar
  4. 4.
    Bitton, R., Ben-Yehuda, M., Davidovich, M., Balazs, Y., Potin, P., Delage, L., Colin, C., and Bianco-Peled, H., Structure of algal-born phenolic polymeric adhesives, Macromol. BioSci., 2006, vol. 6, pp. 737–746.PubMedCrossRefGoogle Scholar
  5. 5.
    Higgins, M.J., Crawford, S.A., Mulvaney, P., and Wetherbee, R., Characterization of the adhesive mucilages secreted by live diatom cells using atomic force microscopy, Protist, 2002, vol. 153, pp. 25–38.PubMedCrossRefGoogle Scholar
  6. 6.
    Knox, J.P., Cell adhesion, cell separation and plant morphogenesis, Plant J., 1992, vol. 2, pp. 137–141.CrossRefGoogle Scholar
  7. 7.
    Wojtaszek, P., Genes and plant cell walls: a difficult relationship, Biol. Rev., 2000, vol. 75, pp. 437–475.PubMedCrossRefGoogle Scholar
  8. 8.
    Callow, J.A., Stanley, M.S., Wetherbee, R., and Callow, M.E., Cellular and molecular approaches to understanding primary adhesion in Enteromorpha: An overview, Biofouling, 2000, vol. 16, pp. 141–150.CrossRefGoogle Scholar
  9. 9.
    Potin, P. and Leblanc, C., Phenolic-based adhesives of marine brown algae, Biological Adhesives, Smith, A.M. and Callow, J.A., Eds., Berlin: Springer-Verlag, 2006, pp. 105–124.CrossRefGoogle Scholar
  10. 10.
    Gurvan, M., Tonon, T., Scornet, D., Cock, J.M., and Kloareg, B., The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in eukaryotes, New Phytol., 2010, vol. 188, pp. 82–97.CrossRefGoogle Scholar
  11. 11.
    Sharova, E.I., Kletochnaya stenka rastenii (Plant Cell Wall), St. Petersburg: St. Petersburg Gos. Univ., 2004.Google Scholar
  12. 12.
    Popper, Z.A., Michel, G., Hervé, C., Domozych, D.S., Willats, W.G.T., Tuohy, M.G., Kloareg, B., and Stengel, D.B., Evolution and diversity of plant cell walls: from algae to flowering plants, Annu. Rev. Plant Biol., 2011, vol. 62, pp. 567–590.PubMedCrossRefGoogle Scholar
  13. 13.
    Vreeland, V., Grotkopp, E., Espinosa, S., Quiroz, D., Laetsch, W.M., and West, J., The pattern of cell wall adhesive formation by Fucus zygotes, Hydrobiologia, 1993, vol. 260/261, pp. 485–491.CrossRefGoogle Scholar
  14. 14.
    Quatrano, R.S. and Stevens, P.T., Cell wall assembly in Fucus zygotes: 1. Characterization of the polysaccharide components, Plant Physiol., 1976, vol. 58, pp. 224–231.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Schoenwaelder, M.E.A. and Clayton, M.N., Secretion of phenolic substances into the zygote wall and cell plate in embryos of Hormosira and Acrocarpia (Fucales, Phaeophyceae), J. Phycol., 1998, vol. 34, pp. 969–980.CrossRefGoogle Scholar
  16. 16.
    Bisgrove, S.R. and Kropf, D.L., Cell wall deposition during morphogenesis in fucoid algae, Planta, 2001, vol. 212, pp. 648–658.PubMedCrossRefGoogle Scholar
  17. 17.
    Rinaudo, M., Seaweed polysaccharides, Comprehensive Glycoscience. From Chemistry to Systems Biology, vol. 2, Kamerling, J.P., Ed., New York: Elsevier, 2007, pp. 691–735.Google Scholar
  18. 18.
    Usov, A.I. and Bilan, M.I., Fucoidans sulfated polysaccharides in brown algae, Usp. Khim., 2009, vol. 78, pp. 846–862.CrossRefGoogle Scholar
  19. 19.
    Vishchuk, O., Tarbeeva, D., Ermakova, S., and Zvyagintseva, T., Structural characteristics and biological activity of fucoidans from brown algae Alaria sp. and Saccharina japonica of different reproductive status, Chem. Biodiversity, 2012, vol. 9, pp. 817–828.CrossRefGoogle Scholar
  20. 20.
    Tsekos, I., The sites of cellulose synthesis in algae: diversity and evolution of cellulose-synthesizing enzyme complexes, J. Phycol., 1999, vol. 35, pp. 635–655.CrossRefGoogle Scholar
  21. 21.
    Hallmann, A., The pherophorins: common, versatile building blocks in the evolution of extracellular matrix architecture in Volvocales, Plant J., 2006, vol. 45, pp. 292–307.PubMedCrossRefGoogle Scholar
  22. 22.
    Lahaye, M. and Robic, A., Structure and functional properties of ulvan, a polysaccharide from green seaweeds, Biomacromolecules, 2007, vol. 8, pp. 1765–1774.PubMedCrossRefGoogle Scholar
  23. 23.
    Domozych, D.S., Sørensen, I., and Willats, W.G.T., The distribution of cell wall polymers during antheridium development and spermatogenesis in the charophycean green alga, Chara coralline, Ann. Bot., 2009, vol. 104, pp. 1045–1056.CrossRefGoogle Scholar
  24. 24.
    Sørensen, I., Pettolino, F.A., Bacic, A., Ralph, J., Lu, F., O’Neill, M.A., Fei, Z., Rose, J.K., Domozych, D.S., and Willats, W.G., The charophycean green algae provide insights into the early origins of plant cell walls, Plant J., 2011, vol. 68, pp. 201–211.PubMedCrossRefGoogle Scholar
  25. 25.
    Kloareg, B. and Quatrano, R.S., Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides, Oceanogr. Mar. Biol. Annu. Rev., 1988, vol. 26, pp. 259–315.Google Scholar
  26. 26.
    Tsekos, I., The supramolecular organization of red algal cell membranes and their participation in the biosynthesis and secretion of extracellular polysaccharides: a review, Protoplasma, 1996, vol. 193, pp. 10–32.CrossRefGoogle Scholar
  27. 27.
    Lechat, H., Amat, M., Mazoyer, J., Buleon, A., and Lahaye, M., Structure and distribution of glucomannan and sulfated glucan in the cell walls of the red alga Kappaphycus alvarezii (Gigartinales, Rhodophyta), J. Phycol., 2000, vol. 36, pp. 891–902.CrossRefGoogle Scholar
  28. 28.
    Usov, A.I., Problems and achievements of the structural analysis of sulfated polysaccharides of red algae, Khimiya Rastit. Syr’ya, 2001, no. 2, pp. 7–20.Google Scholar
  29. 29.
    Martone, P.T., Estevez, J.M., Lu, F., Ruel, K., Denny, M.W., Somerville, C., and Ralph, J., Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture, Curr. Biol., 2009, vol. 19, pp. 169–175.PubMedCrossRefGoogle Scholar
  30. 30.
    Domozych, D.S., Algal Cell Walls, Publ. Online: 15 Sept. 2011, doi 10.1002/9780470015902.a0000315.pub3Google Scholar
  31. 31.
    Quatrano, R.S., Developmental biology: development in marine organisms, Experimental Marine Biology, Mariscal, R.N., Ed., New York: Academic, 1974, pp. 303–346.Google Scholar
  32. 32.
    Hable, W.E. and Kropf, D.L., Roles of secretion and cytoskeleton in cell adhesion and polarity establishment in Pelvetia compressa zygotes, Dev. Biol., 1998, vol. 198, pp. 45–65.PubMedGoogle Scholar
  33. 33.
    Kropf, D.L., Bisgrove, S.R., and Hable, W.E., Establishing a growth axis in fucoid algae, Trends Plant Sci., 1999, vol. 4, pp. 490–494.PubMedCrossRefGoogle Scholar
  34. 34.
    Tarakhovskaya, E.R., Maslov, Yu.I., and Railkin, A.I., Effect of hydrodynamic conditions and some physiologically active substances on growth and attachment of Fucus vesiculosus L. and Fucus edentatus De la Pyl. (Phaeophyta) embryos to the substrate, Tez. dokl. XI nauch. sessii Morskoi biologicheskoi stantsii SPbGU (Abst. XI Scientific Session of the Marine Biological Station, St. Petersburg Gos. Univ.), St. Petersburg: St. Petersburg Gos. Univ., 2010, pp. 54–56.Google Scholar
  35. 35.
    Bitton, R., Berglin, M., Elwing, H., Colin, C., Delage, L., Potin, P., and Bianco-Peled, H., The influence of halide-mediated oxidation on algae-born adhesives, Macromol. BioSci., 2007, vol. 7, pp. 1280–1289.PubMedCrossRefGoogle Scholar
  36. 36.
    Ragan, M.A. and Glombitza, K.W., Phlorotannins, brown algal polyphenols, Prog. Phycol. Res, 1986, vol. 4, pp. 129–241.Google Scholar
  37. 37.
    Mehrtens, G., Haloperoxidase activities in arctic macroalgae, Polar Biol., 1994, vol. 14, pp. 351–354.CrossRefGoogle Scholar
  38. 38.
    Butler, A. and Walker, J.V., Marine haloperoxidases, Chem. Rev., 1998, vol. 93, pp. 1937–1944.CrossRefGoogle Scholar
  39. 39.
    Van Schijndel, J.W.P.M., Vollenbroek, E.G.M., and Wever, R., The chloroperoxidase from the fungus Curvularia inaequalis: a novel vanadium enzyme, Biochim. Biophys. Acta, 1993, vol. 1161, pp. 249–256.PubMedCrossRefGoogle Scholar
  40. 40.
    Wever, R., Structure and function of vanadium haloperoxidases, Vanadium: Biochemical and Molecular Biological Approaches, Michibata, H., Ed., Dordrecht: Springer-Verlag, 2012, pp. 95–125.CrossRefGoogle Scholar
  41. 41.
    Eickhoff, H., Jung, G., and Rieker, A., Oxidative phenol coupling tyrosine dimers and libraries containing tyrosyl peptide dimers, Tetrahedron, 2001, vol. 57, pp. 353–364.CrossRefGoogle Scholar
  42. 42.
    Colin, C., Leblanc, C., Wagner, E., Delage, L., Leize-Wagner, E., van Dorsselaer, A., Kloareg, B., and Potin, P., The brown algal kelp Laminaria digitata features distinct bromoperoxidase and iodoperoxidase activities, J. Biol. Chem., 2003, vol. 278, pp. 23545–23552.PubMedCrossRefGoogle Scholar
  43. 43.
    Berglin, M., Delage, L., Potin, P., Vilter, H., and Elwing, H., Enzymatic cross-linking of a phenolic polymer extracted from the marine alga Fucus serratus, Biomacromolecules, 2004, vol. 5, pp. 2376–2383.PubMedCrossRefGoogle Scholar
  44. 44.
    Callow, J.A. and Callow, M.E., The Ulva spore adhesive system, Biological Adhesives, Smith, A.M. and Callow, J.A., Eds., Berlin: Springer-Verlag, 2006, pp. 63–78.CrossRefGoogle Scholar
  45. 45.
    Haug, A., The influence of borate and calcium on the gel formation of a sulfated polysaccharide from Ulva lactuca, Acta Chem. Scand., 1976, vol. 30, pp. 562–566.CrossRefGoogle Scholar
  46. 46.
    Stanley, M.S., Callow, M.E., and Callow, J.A., Monoclonal antibodies to adhesive cell coat glycoproteins secreted by zoospores of the green alga Enteromorpha, Planta, 1999, vol. 210, pp. 61–71.PubMedCrossRefGoogle Scholar
  47. 47.
    Kieslisewski, M.J. and Lamport, D.T.A., Extensin: repetitive motifs, functional sites, posttranslational codes and phylogeny, Plant J., 1994, vol. 5, pp. 157–172.CrossRefGoogle Scholar
  48. 48.
    Pettitt, M.E., Henry, S.L., Callow, M.E., Callow, J.A., and Clare, A.S., Activity of commercial enzymes on settlement and adhesion of cypris larvae of the barnacle Balanus amphitrite, spores of the green alga Ulva linza, and the diatom Navicula perminuta, Biofouling, 2004, vol. 20, pp. 299–311.PubMedCrossRefGoogle Scholar
  49. 49.
    Humphrey, A.J., Finlay, J.A., Pettitt, M.E., Stanley, M.S., and Callow, J.A., Effect of Ellman’s reagent and dithiothreitol on the curing of the spore adhesive glycoprotein of the green alga Ulva, J. Adhesion, 2005, vol. 81, pp. 791–803.CrossRefGoogle Scholar
  50. 50.
    Chamberlain, A.H.L. and Evans, L.V., Aspects of spore production in the red alga Ceramium, Protoplasma, 1973, vol. 76, pp. 139–159.CrossRefGoogle Scholar
  51. 51.
    Bouzon, Z.L., Ouriques, L.C., and Oliveira, E.C., Spore adhesion and cell wall formation in Gelidium floridanum (Rhodophyta, Gelidiales), J. Appl. Phycol., 2006, vol. 18, pp. 287–294.CrossRefGoogle Scholar
  52. 52.
    Ouriques, L.C., Schmidt, E.C., and Bouzon, Z.L., The mechanism of adhesion and germination in the carpospores of Porphyra spiralis var. amplifolia (Rhodophyta, Bangiales), Micron, 2012, vol. 43, pp. 269–277.PubMedCrossRefGoogle Scholar
  53. 53.
    Tsekos, I., Growth and differentiation of the Golgi apparatus and wall formation during carposporogenesis in the red alga, Gigartina teedii (Roth.) Lamour., J. Cell Sci., 1981, vol. 52, pp. 71–84.PubMedGoogle Scholar
  54. 54.
    Railkin, A.I., Kolonizatsiya tverdykh tel bentosnymi organizmami (Colonization of Solids by Benthic Organisms), St. Petersburg: St. Petersburg Gos. Univ., 2008.Google Scholar
  55. 55.
    Bitton, R. and Bianco-Peled, H., Novel biometric adhesives based on algae glue, Macromol. BioSci., 2008, vol. 8, pp. 393–400.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Department of Plant Physiology and Biochemistry, Faculty of Biology and Soil ScienceSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations