Russian Journal of Plant Physiology

, Volume 60, Issue 6, pp 791–799 | Cite as

Activities of enzymes catalyzing benzylisoquinoline alkaloid biosynthesis in Annona diversifolia saff. during early development

  • I. De la Cruz-Chacón
  • A. R. González-Esquinca
Research Papers


In species of the Annonaceae family, particularly Annona diversifolia Safford, benzylisoquinoline alkaloids (BIA) are secondary metabolites that appear to contribute to the phytopathogen defense mechanisms of plants. Polyphenol oxidase (PPO, EC, amine oxidase (AO, EC, tyrosine decarboxylase (TYDC, EC, and norcoclaurine synthase (NCS, EC catalyze the initial steps in BIA biosynthesis. This study reports the activity of these enzymes in different plant organs at four stages of the early development of A. diversifolia seedlings: seeds imbibed for 5 days, seeds after 3 days of germination, seedlings with leaf primordia, and seedlings with two true leaves. Evaluations were performed according to specific protocols for each of the enzymes. All four enzymes were active in the developing embryos during imbibition and germination, but no activity was detected in the endosperm. In seedlings with leaf primordia and seedlings with two true leaves (25 and 30 days after the start of imbibition, respectively), the activities of three enzymes (TYDC, PPO, and AO) were observed in all of the tissues, while NCS activity was only observed in the stems and roots. The activities of these enzymes in embryos provides evidence that alkaloid biosynthesis at early developmental stages is related to embryo growth and development. This study is the first report that has described some aspects of alkaloid biosynthesis in Annonaceae.


Annona diversifolia Annonaceae early biosynthesis secondary metabolism seed germination seedling development 



amine oxidase


benzylisoquinoline alkaloids




norcoclaurine synthase


polyphenol oxidase


tyrosine decarboxylase.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kutchan, T.M., Ecological arsenal and developmental dispatcher. The paradigm of secondary metabolism plant physiology, Plant Physiol., 2001, vol. 125, pp. 58–60.PubMedCrossRefGoogle Scholar
  2. 2.
    Dudareva, N., Murfitt, L., Mann, C., Gorenstein, N., Kolosova, N., Kish, C., Bonham, C., and Wood, K., Developmental regulation of methylbenzoate biosynthesis and emission in snapdragon flowers, Plant Cell, 2000, vol. 12, pp. 949–961.PubMedGoogle Scholar
  3. 3.
    Jurado, E. and Moles, A., Germination deferment strategies, The Biology of Seeds: Recent Research Advances, Proc. 7th Int. Workshop on Seeds, part 4, ch. 41, Nicolás, G., Bradford, K.J., Côme, D., and Pritchard, H.W, Eds., Salamanca, Spain: CAB Int., 2003, pp. 381–388.CrossRefGoogle Scholar
  4. 4.
    Liscombe, D.K., MacLeod, B.J., Loukanina, N., Nandi, O.I., and Facchini, P.J., Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms, Phytochemistry, 2005, vol. 66, pp. 1374–1393.PubMedCrossRefGoogle Scholar
  5. 5.
    Cavé, A., Leboeuf, M., and Waterman, P.G., The aporphinoid alkaloids of the Annonaceae, Alkaloids: Chemical and Biological Perspectives, vol. 5, Pelletier, S.W., Ed., New York: John Wiley and Sons, 1987, pp. 133–270.Google Scholar
  6. 6.
    An update of the angiosperm phylogeny group classification for the orders and families of flowering plants, The Angiosperm Phylogeny Group, APG III, Bot. J. Linn. Soc., 2009, vol. 161, pp. 105–121.Google Scholar
  7. 7.
    De la Cruz-Chacón, I., González-Esquinca, A.R., Guevara-Fefer, P., and Jiménez, García, L.F., Liriodenine, early antimicrobial defense in Annona diversifolia, Z. Naturforsch., 2011, vol. 66c, pp. 377–384.Google Scholar
  8. 8.
    De la Cruz-Chacón, I. and González-Esquinca, A.R., Liriodenine alkaloid in Annona diversifolia during early development, Nat. Prod. Res., 2012, vol. 26, pp. 42–49.PubMedCrossRefGoogle Scholar
  9. 9.
    Zenk, M.H., Rueffer, M., Amann, M., Deus-Neumann, B., and Nagakura, N., Benzylisoquinoline biosynthesis by cultivated plant cells and isolated enzymes, J. Nat. Prod., 1985, vol. 48, pp. 725–738.CrossRefGoogle Scholar
  10. 10.
    KEGG, Kyoto Encyclopedia of Genes and Genomes, Isoquinoline Alkaloid Biosynthesis, last updated: December 1, 2011,
  11. 11.
    Escribano, J., Cabanes, J., Chazzara, S., and García-Carmona, F., Characterization of monophenolase activity of table beet polyphenol oxidase. Determination of kinetic parameters on the tyramine-dopamine pair, J. Agric. Food Chem., 1997, vol. 45, pp. 4209–4214.CrossRefGoogle Scholar
  12. 12.
    Bilka, F., Balažová, A., Bilková, A., Subr, Z., and Pšenák, M., Characterization of polyphenol oxidase from the latex of opium poppy, Biol. Plant., 2003, vol. 47, pp. 111–115.CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Bilková, A., Ková, A., Bezakóva, A., Bilka, F., and Pšenák, M., An amine oxidase in seedlings of Papaver somniferum L., Biol. Plant., 2005, vol. 49, pp. 389–394.CrossRefGoogle Scholar
  15. 15.
    Phan, A.P.H., Ngo, T.T., and Lenhoff, H.M., Tyrosine decarboxylase. spectrophotometric assay and application in determining pyridoxal-5-phosphate, Appl. Biochem. Biotechnol., 1983, vol. 8, pp. 127–133.PubMedCrossRefGoogle Scholar
  16. 16.
    Facchini, P. and de Luca, V., Phloem-specific expression of tyrosine/dopa decarboxylase genes and the biosynthesis of isoquinoline alkaloids in opium poppy, Plant Cell, 1995, vol. 7, pp. 1811–1821.PubMedGoogle Scholar
  17. 17.
    Samanani, N. and Facchini, P.J., Purification and characterization of norcoclaurine synthase. The first committed enzyme in benzylisoquinoline alkaloid biosynthesis in plants, J. Biol. Chem., 2002, vol. 277, pp. 33878–33883.PubMedCrossRefGoogle Scholar
  18. 18.
    Bradford, M.M., A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.PubMedCrossRefGoogle Scholar
  19. 19.
    Brückner, H. and Westhauser, T., Chromatographic determination of L-and D-amino acids in plants, Amino Acids, 2003, vol. 24, pp. 43–55.PubMedCrossRefGoogle Scholar
  20. 20.
    Yazaki, K., Sugiyama, A., Morita, M., and Shitan, N., Secondary transport as an efficient membrane transport mechanism for plant secondary metabolites, Phytochem. Rev., 2008, vol. 7, pp. 513–524.CrossRefGoogle Scholar
  21. 21.
    Otani, M., Shitan, N., Sakai, K., Martinoia, E., Sato, F., and Yazaki, K., Characterization of vacuolar transport of the endogenous alkaloid berberine in Coptis japonica, Plant Physiol., 2005, vol. 138, pp. 1939–1946.PubMedCrossRefGoogle Scholar
  22. 22.
    Mayer, A.M., Polyphenol oxidases in plants and fungi: going places? A review, Phytochemistry, 2006, vol. 67, pp. 2318–2331.PubMedCrossRefGoogle Scholar
  23. 23.
    Cona, A., Rea, G., Angelini, R., Federico, R., and Tavladoraki, P., Functions of amine oxidases in plant development and defense, Trends Plant Sci., 2006, vol. 11, pp. 80–88.PubMedCrossRefGoogle Scholar
  24. 24.
    Kawalleck, P., Keller, H., Hahlbrock, K., Scheel, D., and Somssich, I.E., A pathogen-responsive gene of parsley encodes tyrosine decarboxylase, J. Biol. Chem., 1993, vol. 268, pp. 2189–2194.PubMedGoogle Scholar
  25. 25.
    Samanani, N. and Facchini, P.J., Isolation and partial characterization of norcoclaurine synthase, the first committed step in benzylisoquinoline alkaloid biosynthesis, from opium poppy, Planta, 2001, vol. 213, pp. 898–906.PubMedCrossRefGoogle Scholar
  26. 26.
    Facchini, P. and de Luca, V., Differential and tissuespecific expression of a gene family for tyrosine/dopa decarboxylase in opium poppy, J. Biol. Chem., 1994, vol. 269, pp. 26 684–26 690.Google Scholar
  27. 27.
    Lehmann, T. and Pollmann, S., Gene expression and characterization of a stress-induced tyrosine decarboxylase from Arabidopsis thaliana, FEBS Lett., 2009, vol. 583, pp. 1895–1900.PubMedCrossRefGoogle Scholar
  28. 28.
    Hosoi, K., Purification and some properties of L-tyrosine carboxy-lyase from barley roots, Plant Cell Physiol., 1974, vol. 15, pp. 429–440.Google Scholar
  29. 29.
    Chapple, C.C.S., Walker, M.A., and Ellis, B.E., Plant tyrosine decarboxylase can be strongly inhibited by L-α-aminooxy-β-phenylpropionate, Planta, 1986, vol. 167, pp. 101–105.CrossRefGoogle Scholar
  30. 30.
    Facchini, P.J., Johnson, A.G., Poupart, J., and de Luca, V., Uncoupled defense gene expression and antimicrobial alkaloid accumulation in elicited opium poppy cell cultures, Plant Physiol., 1996, vol. 111, pp. 687–697.PubMedCrossRefGoogle Scholar
  31. 31.
    Constabel, C.P., Bergey, D.R., and Ryan, C.A., Polyphenol oxidase as a component of the inducible defense response in tomato against herbivores, Recent Advances in Phytochemistry, Romeo, J.T., et al., Eds., New York: Plenum, 1996, pp. 231–251.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • I. De la Cruz-Chacón
    • 1
    • 2
  • A. R. González-Esquinca
    • 1
  1. 1.Laboratorio de Fisiología y Química Vegetal, Facultad de Ciencias BiológicasUniversidad de Ciencias y Artes de ChiapasTuxtla Gutiérrez, ChiapasMéxico
  2. 2.Posgrado en Ciencias BiológicasUniversidad Nacional Autónoma de MéxicoCoyoacán, Distrito FederalMéxico

Personalised recommendations