Advertisement

Russian Journal of Plant Physiology

, Volume 60, Issue 5, pp 597–610 | Cite as

The involvement of phytohormones in the plant sex regulation

  • G. A. Gerashchenkov
  • N. A. Rozhnova
Reviews

Abstract

The data concerning the plant sex regulation by phytohormones are presented. Functioning of signaling pathways regulating floral development and sex expression, including those with phytohormone involvement, are considered. The role of phytohormones in the functioning of systems and mechanisms of sex regulation is analyzed. The examples of sex reversion by plant treatment with phytohormones are presented. It is demonstrated that many genes determining sex encode proteins involved in the phytohormone metabolism. The significance of phytohormone investigation for the understanding of molecular mechanisms of plant sex regulation is discussed.

Keywords

plants dioecy monoecy sex determination sex reversion amphimixis apomixis gynoecy phytohormones 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biologiya. Bol’shoi entsiklopedicheskii slovar’ (Biology. Great Encyclopedic Dictionary), Gilyarov, M.S., Ed., Moscow: Rossiiskaya Entsiklopediya, 1998.Google Scholar
  2. 2.
    Melikyan, A.P., Sexual polymorphism, Embriologiya tsvetkovykh rastenii. Terminologiya i kontseptsii. T. 3. Sistemy reproduktsii (Embryology of Flowering Plants, Terminology and Concepts, vol. 3, Systems of Reproduction), Batygina, T.B., Ed., St. Petersburg: Mir i Sem’ya, 2000, pp. 73–75.Google Scholar
  3. 3.
    Charlesworth, D., Plant sex determination and sex chromosomes, Heredity, 2002, vol. 88, pp. 94–101.PubMedCrossRefGoogle Scholar
  4. 4.
    Tanurdzic, M. and Banks, J.A., Sex-determining mechanisms in land plants, Plant Cell, 2004, vol. 16, suppl., pp. 61–71.CrossRefGoogle Scholar
  5. 5.
    Chuck, G., Molecular mechanisms of sex determination in monoecious and dioecious plants, Adv. Bot. Res., 2010, vol. 54, pp. 53–83.CrossRefGoogle Scholar
  6. 6.
    Ming, R., Bendahmane, A., and Renner, S.S., Sex chromosomes in land plants, Annu. Rev. Plant Biol., 2011, vol. 62, pp. 485–514.PubMedCrossRefGoogle Scholar
  7. 7.
    Moliterni, V.M.C., Cattivelli, L., Ranalli, P., and Mandolino, G., The sexual differentiation of Cannabis sativa L.: a morphological and molecular study, Euphytica, 2004, vol. 140, pp. 95–106.CrossRefGoogle Scholar
  8. 8.
    Dey, S.S., Behera, T.K., Munshi, A.D., Pal, A., and Rakshit, S., Gynoecy in bitter melon (Momordica charantia) for exploiting hybrid vigour, Proc. IX EUCARPIA Meeting on genetics and breeding of Cucurbitaceae (May 21–24, 2008), Avignon (France): INRA, 2008, pp. 539–542.Google Scholar
  9. 9.
    Chailakhyan, M.K. and Khrianin, V.N., Sexuality in Plants and Its Hormonal Regulation, New York: Springer, 1987.CrossRefGoogle Scholar
  10. 10.
    Khryanin, V.N., Role of phytohormones in sex differentiation in plants, Russ. J. Plant Physiol., 2002, vol. 49, pp. 545–551.CrossRefGoogle Scholar
  11. 11.
    Wedekind, C. and Stelkens, R.B., Tackling the diversity of sex determination, Biol. Lett., 2010, vol. 6, pp. 7–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Grodnitskii, D.L., Dve teorii biologicheskoi evolyutsii (Two Theories of Biological Evolution), Saratov: Nauch. Kniga, 2002.Google Scholar
  13. 13.
    Diggle, P.K., di Stilio, V.S., Gschwend, A.R., Golenberg, E.M., Moore, R.C., Russell, J.R.W., and Sinclair, J.P., Multiple developmental processes underlie sex differentiation in angiosperms, Trends Genet., 2011, vol. 27, pp. 368–376.PubMedCrossRefGoogle Scholar
  14. 14.
    Chandler, J.W., The hormonal regulation of flower development, J. Plant Growth Regul., 2011, vol. 30, pp. 242–254.CrossRefGoogle Scholar
  15. 15.
    Aref’ev, V.A. and Lisovenko, L.A., Anglo-russkii tolkovyi slovar’ geneticheskikh terminov (English-Russian Dictionary of Genetic Terms), Moscow: Izd-vo VNIRO, 1995.Google Scholar
  16. 16.
    Ram, D., Kumar, S., Singh, M., Rai, M., and Kalloo, G., Inheritance of gynoecism in bitter gourd (Momordica charantia L.), J. Hered., 2006, vol. 97, pp. 294–295.PubMedCrossRefGoogle Scholar
  17. 17.
    Koizumi, A., Amanai, Y., Ishii, K., Nishihara, K., Kazama, Y., Uchida, W., and Kawano, S., Floral development of an asexual and female-like mutant carrying two deletions in gynoecium-suppressing and stamenpromoting functional regions on the Y chromosome of the dioecious plant Silene latifolia, Plant Cell Physiol., 2007, vol. 48, pp. 1450–1461.PubMedCrossRefGoogle Scholar
  18. 18.
    Richards, A.J., Apomixis in flowering plants: an overview, Phil. Trans R. Soc. Lond. B, 2003, vol. 358, pp. 1085–1093.CrossRefGoogle Scholar
  19. 19.
    Gerashchenkov, G. and Rozhnova, N., Genetic control of gametophytic apomixis: current state of knowledge, Proc. Latv. Acad. Sci., Section B, 2004, vol. 58, pp. 167–174.Google Scholar
  20. 20.
    Spigler, R.B. and Ashman, T.-L., Sex ratio and subdioecy in Fragaria virginiana: the roles of plasticity and gene flow examined, New Phytol., 2011, vol. 190, pp. 1058–1068.PubMedCrossRefGoogle Scholar
  21. 21.
    Chandler, J.W., Floral meristem initiation and emergence in plants, Cell Mol. Life Sci., 2012, vol. 69, pp. 3807–3818.PubMedCrossRefGoogle Scholar
  22. 22.
    Spielman, M., Vinkenoog, R., Dickinson, H.G., and Scott, R.J., The epigenetic basis of gender in flowering plants and mammals, Trends Genet., 2001, vol. 17, pp. 705–711.PubMedCrossRefGoogle Scholar
  23. 23.
    Boss, P.K., Bastow, R.M., Mylne, J.S., and Dean, C., Multiple pathways in the decision to flower: enabling, promoting, and resetting, Plant Cell, 2004, vol. 16, pp. 18–31.CrossRefGoogle Scholar
  24. 24.
    Adrian, J., Torti, S., and Turck, F., From decision to commitment: the molecular memory of flowering, Mol. Plant, 2009, vol. 2, pp. 628–642.PubMedCrossRefGoogle Scholar
  25. 25.
    Yu, H., Ito, T., Zhao, Y., Peng, J., Kumar, P., and Meyerowitz, E.M., Floral homeotic genes are targets of gibberellin signaling in flower development, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 7827–7832.PubMedCrossRefGoogle Scholar
  26. 26.
    Chandler, J., Auxin as compère in plant hormone crosstalk, Planta, 2009, vol. 231, pp. 1–12.PubMedCrossRefGoogle Scholar
  27. 27.
    Mutasa-Göttgens, E. and Hedden, P., Gibberellin as a factor in floral regulatory networks, J. Exp. Bot., 2009, vol. 60, pp. 1979–1989.PubMedCrossRefGoogle Scholar
  28. 28.
    Kaufmann, K., Muino, J.M., Jauregui, R., Airoldi, C.A., Smaczniak, C., Krajewski, P., and Angenent, G., Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower, PLoS Biol., 2009, vol. 7, p: e1000090. doi 10.1371/journal.pbio.1000090PubMedCrossRefGoogle Scholar
  29. 29.
    Sather, D.N., Jovanovic, M., and Golenberg, E.M., Functional analysis of B and C class floral organ genes in spinach demonstrates their role in sexual dimorphism, BMC Plant Biol., 2010, vol. 10, pp. 1–14.CrossRefGoogle Scholar
  30. 30.
    Olszewski, N., Sun, T.-P., and Gubler, F., Gibberellin signaling: biosynthesis, catabolism, and response pathways, Plant Cell, 2002, vol. 14, pp. 61–80.Google Scholar
  31. 31.
    Cheng, Y. and Zhao, Y., A role for auxin in flower development, J. Integr. Plant Biol., 2007, vol. 49, pp. 99–104.CrossRefGoogle Scholar
  32. 32.
    Feng, X.L., Ni, W.M., Elge, S., Mueller-Roeber, B., Xu, Z.H., and Xue, H.W., Auxin flow in anther filaments is critical for pollen grain development through regulating pollen mitosis, Plant Mol. Biol., 2006, vol. 61, pp. 215–226.PubMedCrossRefGoogle Scholar
  33. 33.
    Cecchetti, V., Altamura, M.M., Falasca, G., Costantino, P., and Cardarelli, M., Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation, Plant Cell, 2008, vol. 20, pp. 1760–1774.PubMedCrossRefGoogle Scholar
  34. 34.
    Cheng, H., Qin, L., Lee, S., Fu, X., Richards, D.E., Cao, D., Luo, D., Harberd, N.P., and Peng, J., Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function, Development, 2004, vol. 131, pp. 1055–1064.PubMedCrossRefGoogle Scholar
  35. 35.
    DeLong, A., Calderon-Urrea, A., and Dellaporta, S.L., Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion, Cell, 1993, vol. 27, pp. 757–768.CrossRefGoogle Scholar
  36. 36.
    Bensen, R., Johal, J., Crane, V.C., Tossberg, J.T., Schnable, P.S., Meeley, R.B., and Briggs, S.P., Cloning and characterization of the maize An1 gene, Plant Cell, 1995, vol. 7, pp. 75–84.PubMedGoogle Scholar
  37. 37.
    Winkler, R.G. and Helentjaris, T., The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis, Plant Cell, 1995, vol. 7, pp. 1307–1317.PubMedGoogle Scholar
  38. 38.
    Spray, C.R., Kobayashi, M., Suzuki, Y., Phinney, B.O., Gaskin, P., and MacMillan, J., The dwarf-1 (d1) mutant of Zea mays blocks steps in the gibberellin-biosynthetic pathway, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 10 515–10 518.CrossRefGoogle Scholar
  39. 39.
    Huang, S., Cerny, R.E., Qi, Y., Bhat, D., Aydt, C.M., Hanson, D.D., Malloy, K.P., and Ness, L., Transgenic studies on the involvement of cytokinin and gibberellin in male development, Plant Physiol., 2003, vol. 131, pp. 1270–1282.PubMedCrossRefGoogle Scholar
  40. 40.
    Stinzi, A. and Browse, J., The Arabidopsis male-sterile mutant opr3 lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 12 837–12 842.Google Scholar
  41. 41.
    Acosta, I.F., Laparra, H., Romero, S.P., Schmelz, E., Hamberg, M., Mottinger, J.P., Moreno, M.A., and Dellaporta, S.L., Tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize, Science, 2009, vol. 323, pp. 262–265.PubMedCrossRefGoogle Scholar
  42. 42.
    Ye, Q., Zhu, W., Li, L., Zhang, S., Yin, Y., Ma, H., and Wenig, X., Brassinosteroid control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, pp. 6100–6105.PubMedCrossRefGoogle Scholar
  43. 43.
    Hartwig, T., Chuck, G.S., Fujioka, S., Klempien, A., Weizbauer, R., Potluri, D.P.V., Choe, S., Johal, G.S., and Schulz, B., Brassinosteroid control of sex determination in maize, Proc. Natl. Acad. Sci. USA, 2011, vol. 108, pp. 19 814–19 819.CrossRefGoogle Scholar
  44. 44.
    Ogawa, T., Uchimiya, H., and Yamada, M.K., Mutual regulation of Arabidopsis thaliana ethylene-responsive element binding protein and a plant floral homeotic gene, APETALA2, Ann. Bot., 2007, vol. 99, pp. 239–244.CrossRefGoogle Scholar
  45. 45.
    Boualem, A., Mohamed, Fergany, M., Fernandez, R., Troadec, C., Martin, A., Morin, H., Sari, M.-A., Collin, F., Flowers, J.M., Pitrat, M., Purugganan, M.D., Dogimont, C., and Bendahmane, A., A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons, Science, 2008, vol. 321, pp. 836–838.PubMedCrossRefGoogle Scholar
  46. 46.
    Boualem, A., Troadec, C., Kovalski, I., Sari, M.A., Perl-Treves, R., and Bendahmane, A., A conserved ethylene biosynthesis enzyme leads to andromonoecy in two Cucumis species, PLoS One, 2009, vol. 4, p: e6144. doi 10.1371/journal.ponePubMedCrossRefGoogle Scholar
  47. 47.
    Yamasaki, S., Fujii, N., and Takahashi, H., Hormonal regulation of sex expression in plants, Vit. Hormones, 2005, vol. 72, pp. 79–110.CrossRefGoogle Scholar
  48. 48.
    Patel, D. and Franklin, K.A., Temperature-regulation of plant architecture, Plant Signal. Behav., 2009, vol. 4, pp. 577–579.PubMedCrossRefGoogle Scholar
  49. 49.
    Adam, H., Collin, M., Richaud, F., Beulé, T., Cros, D., Omoré, A., Nodichao, L., Nouy, B., and Tregear, J.W., Environmental regulation of sex determination in oil palm: current knowledge and insights from other species, Ann. Bot., 2011, vol. 108, pp. 1529–1537.PubMedCrossRefGoogle Scholar
  50. 50.
    Yamane, H., Fern antheridiogens, Int. Rev. Cytol., 1998, vol. 184, pp. 1–32.CrossRefGoogle Scholar
  51. 51.
    Guillon, J.M. and Raquin, C., Environmental sex determination in the genus equisetum: sugars induce male sex expression in cultured gametophytes, Int. J. Plant Sci., 2002, vol. 163, pp. 825–830.CrossRefGoogle Scholar
  52. 52.
    Juarez, C. and Banks, J.A., Sex determination in plants, Curr. Opin. Plant Biol., 1998, vol. 1, pp. 68–72.PubMedCrossRefGoogle Scholar
  53. 53.
    Young, T.E., Giesler-Lee, J., and Gallie, D.R., Senescence-induced expression of cytokinin reverses pistil abortion during maize flower development, Plant J., 2004, vol. 38, pp. 910–922.PubMedCrossRefGoogle Scholar
  54. 54.
    Rodo, A.P., Brugiere, N., Vankova, R., Malbeck, J., Olson, J.M., Haines, S.C., Martin, R.C., Habben, J.E., Mok, D.W.S., and Mok, M.C., Over-expression of a zeatin O-glucosylation gene in maize leads to growth retardation and tasselseed formation, J. Exp. Bot., 2008, vol. 59, pp. 2673–2686.CrossRefGoogle Scholar
  55. 55.
    Liu, Q. and Chen, Y.Q., Insights into the mechanism of plant development: interactions of miRNAs pathway with phytohormone response, Biochem. Biophys. Res. Commun., 2009, vol. 384, pp. 1–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Li, Z., Huang, S., Liu, S., Pan, J., Zhang, Z., Tao, Q., Shi, Q., Jia, Z., Zhang, W., Chen, H., Si, L., Zhu, L., and Cai, R., Molecular isolation of the M gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants, Genetics, 2009, vol. 182, pp. 1381–1385.PubMedCrossRefGoogle Scholar
  57. 57.
    Vyskot, B. and Hobza, R., Gender in plants: sex chromosomes are emerging from the fog, Trends Genet., 2004, vol. 20, pp. 432–438.PubMedCrossRefGoogle Scholar
  58. 58.
    Navajas-Perez, R., Herran, R., Gonzalez, G.L., Jamilena, M., Lozano, R., Rejon, C.R., Rejon, M.R., and Garrido-Ramos, M.A., The evolution of reproductive systems and sex-determining mechanisms within Rumex (Polygonaceae) inferred from nuclear and chloroplastidial sequence data, Mol. Biol. Evol., 2005, vol. 22, pp. 1929–1939.PubMedCrossRefGoogle Scholar
  59. 59.
    Vyskot, B., Araya, A., Veuskens, J., Negrutiu, I., and Mouras, A., DNA methylation of sex chromosomes in a dioecious plant, Melandrium album, Mol. Gen. Genet., 1993, vol. 239, pp. 219–224.Google Scholar
  60. 60.
    Janousek, B., Siroky, J., and Vyskot, B., Epigenetic control of sexual phenotype in a dioecious plant, Melandrium album, Mol. Gen. Genet., 1996, vol. 250, pp. 483–490.CrossRefGoogle Scholar
  61. 61.
    Dellaporta, S.L. and Calderon-Urrea, A., Sex determination in flowering plants, Plant Cell, 1993, vol. 5, pp. 1241–1251.PubMedGoogle Scholar
  62. 62.
    Martin, A., Troadec, C., Boualem, A., Rajab, M., Fernandez, R., Morin, H., Pitrat, M., Dogimont, C., and Bendahmane, A., A transposon-induced epigenetic change leads to sex determination in melon, Nature, 2009, vol. 461, pp. 1135–1138.PubMedCrossRefGoogle Scholar
  63. 63.
    Martin, A. and Bendahmane, A., A blessing in disguise: transposable elements are more than parasites, Epigenetics, 2010, vol. 5, pp. 378–380.PubMedCrossRefGoogle Scholar
  64. 64.
    Zaitchik, B.F., LeRoux, L.G., and Kellogg, E.A., Development of male flowers in Zizania aquatica (North American wild-rice; Gramineae), Int. J. Plant Sci., 2000, vol. 161, pp. 345–351.PubMedCrossRefGoogle Scholar
  65. 65.
    Arora, S.K. and Mehra, R., Advances in physiology of vegetable crops: a brief background, Advances in Plant Physiology, Trivedi, P.C., Ed., New Delhi (India): IK Pub., 2006.Google Scholar
  66. 66.
    Durand, B. and Durand, R., Sex determination and reproductive organ differentiation in Mercurialis, Plant Sci., 1991, vol. 80, pp. 49–65.CrossRefGoogle Scholar
  67. 67.
    Mazzucato, A., Nijs, A.P.M., and Falcinelli, M., Estimation of parthenogenesis frequency in Kentucky bluegrass with auxin-induced parthenocarpic seeds, Crop Sci., 1996, vol. 36, pp. 9–16.CrossRefGoogle Scholar
  68. 68.
    Koltunow, A.M., Johnson, S.D., Lynch, M., Yoshihara, T., and Costantino, P., Expression of rolb in apomictic Hieracium piloselloides Vill. causes ectopic meristems in planta and changes in ovule formation where apomixis initiates at higher frequency, Planta, 2001, vol. 214, pp. 196–205.PubMedCrossRefGoogle Scholar
  69. 69.
    Polegri, L., Calderini, O., Arcioni, S., and Pupilli, F., Specific expression of apomixis-linked alleles revealed by comparative transcriptomic analysis of sexual and apomictic Paspalum simplex Morong flowers, J. Exp. Bot., 2010, vol. 61, pp. 1869–1883.PubMedCrossRefGoogle Scholar
  70. 70.
    Gerashchenkov, G., Rozhnova, N., Gorbunova, V., and Timirkaeva, A., The analysis of hormonal levels in top leaves and flower buds of the Boechera accessions with asexual (apomictic) and sexual (amphimictic) reproduction, Proc. Latv. Acad. Sci., Sect. B, 2007, vol. 61, pp. 206–211.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Institute of Biochemistry and Genetics, Ufa Research CenterRussian Academy of SciencesUfaRussia

Personalised recommendations