Advertisement

Russian Journal of Plant Physiology

, Volume 60, Issue 4, pp 529–535 | Cite as

Characterization of a novel Dunaliella salina (Chlorophyta) strain and the assessment of its cultivation parameters

  • N. V. NemtsevaEmail author
  • E. A. Selivanova
  • M. E. Ignatenko
  • N. V. Sharapova
Research Papers

Abstract

Physiological characteristics of a novel strain of the halophilic alga Dunaliella salina IPPAS D-232 isolated from the hypersaline lake Razval (Sol-Iletsk, Orenburg region) were studied. It was shown that the extract from the cells of this strain manifested antioxidant properties and also antibacterial activity relative to opportunistic bacteria. The influence of medium stirring and salinity on the level of D. salina antioxidant activity was assessed: it was established that medium salinization (93 g/L) and continuous stirring favored the highest accumulation of D. salina IPPAS D-232 biomass. It was found that the extremely halophilic archaea Halorubrum tebenquichense and moderately halophilic bacterium Marinococcus halophilus stimulated D. salina development and increased its antioxidant activity. The results obtained expand our knowledge of specific ecological features of the studied microalgal species; they could form the basis for the development of new approaches to the mass cultivation of D. salina.

Keywords

Dunaliella salina antioxidant activity alga cultivation 

Abbreviations

POL

peroxidation of lipids

SChS

standard chemoluminescent system

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oren, A., A century of Dunaliella research: 1905–2005, Adaptation to Life at High Salt Concentrations in Archea, Bacteria, and Eucarya, Gunde-Cimerman, N., Oren, A., Plemenitaš, A., Eds., Heidelberg: Springer-Verlag, 2005, pp. 491–502.CrossRefGoogle Scholar
  2. 2.
    Ben-Amoz, A., β-Carotene from science to commerce, Enigmatic Microorganisms and Life in Extreme Environments, Seckbach, J., Ed., Dordrecht: Kluwer, 1999, pp. 399–410.CrossRefGoogle Scholar
  3. 3.
    Dufosse, L., Galaupa, P., Yaronb, A., Shoshana, M.A., Blancc, P., Kotamballi, N., Murthyd, C., and Ravishankar, G.A., Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci. Technol., 2005, vol. 16, pp. 389–406.CrossRefGoogle Scholar
  4. 4.
    Nemtseva, N.V., Selivanova, E.A., Yatsenko-Stepanova, T.N., and Ignatenko, M.E., Algoplankton structure in Sol-Iletsk lakes with different levels of salinity, Izv. Penzensk. Gos. Ped. Univ. im. V.G. Belinskogo, 2011, no. 25, pp. 535–541.Google Scholar
  5. 5.
    Garcia, F. and Freile-Pelegrin, Y., Physiological characterization of Dunaliella sp. (Chlorophyta, Volvocales) from Yucatan, Mexico, Biores. Technol., 2007, vol. 98, pp. 1359–1365.CrossRefGoogle Scholar
  6. 6.
    Ventosa, A. and Arahal, D.R., Microbial life in the Dead Sea, Enigmatic Microorganisms and Life in Extreme Environments, Seckbach, J., Ed., Dordrecht: Kluwer, 1999, pp. 357–368.CrossRefGoogle Scholar
  7. 7.
    Lizama, C., Monteoliva-Sánchez, M., Suárez-García, A., Roselló-Mora, R., Aguilera, M., Campos, V., and Ramos-Cormenzana, A., Halorubrum tebenquichense sp. Nov., a novel halophilic archaeon isolated from the Atacama Saltern, Chile, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 149–155.PubMedGoogle Scholar
  8. 8.
    Novitsky, T.J. and Kushner, D.J., Planococcus halophilus sp. Nov., a facultatively halophilic coccus, Int. J. Syst. Bacteriol., 1976, vol. 26, pp. 53–57.CrossRefGoogle Scholar
  9. 9.
    Hao, M.V., Kocur, M., and Komagata, K., Marinococcus gen. Nov., a new genus for motile cocci with mesodiaminopimelic acid in the cell wall; and Marinococcus albus sp. Nov. and Marinococcus halophilus (Novitsky and Kushner) comb. Nov., J. Gen. Appl. Microbiol., 1984, vol. 30, pp. 449–459.CrossRefGoogle Scholar
  10. 10.
    Vladimirov, Yu.A., Lopukhin, Yu.M., Molodenkov, M.N., and Klebanov, G.I., Register chemiluminescence constituents of blood serum in the presence of divalent iron, Byul. Exp. Biol., 1982, no. 4, pp. 101–102.Google Scholar
  11. 11.
    Farkhutdinov, R.R. and Likhovskikh, V.A., Khemilyuminestsentnye metody issledovaniya svobodnoradikal’nogo okisleniya v biologii i meditsine (Chemiluminescent Methods of Free Radical Oxidation Studying in Biology and Medicine), Ufa, 1995.Google Scholar
  12. 12.
    Bukharin, O.V., Cherkasov, S.V., Sgibnev, A.V., Zabirova, T.M., and Ivanov, Yu.B., Effects of microbial metabolites on catalase activity and growth of Staphylococcus aureus 6538 P, Byul. Exp. Biol., 2000, vol. 130, pp. 80–82.Google Scholar
  13. 13.
    Strickland, J.D.H. and Parsons, T.R., A Practical handbook of seawater analysis, Fish. Res. Board Can. Bull., 1968, vol. 167, pp. 1–311.Google Scholar
  14. 14.
    Glants, S., Mediko-biologicheskaya statistika (Biomedical Statistics), Moscow: Praktika, 1998.Google Scholar
  15. 15.
    Moulton, T.P., Sommer, T.R., Burford, M.A., and Borowitzka, L.J., Competition between Dunaliella species at high salinity, Hydrobiologia, 1987, vol. 151/152, pp. 107–116.CrossRefGoogle Scholar
  16. 16.
    Selivanova, E.A., Nemtseva, N.V., Plotnikov, A.O., Krasikov, S.I., and Sharapova, N.V., Effect of the alga Dunaliella salina on the antioxidant activity of blood serum of experimental animals, Med. Nauka i Obrazov. Urala, 2011, no. 1, pp. 86–88.Google Scholar
  17. 17.
    Nemtseva, N.V., Selivanova, E.A., and Plotnikov, A.O., Role of symbiotic interactions in the survival of micro-organisms in hypergallin ponds, Zh. Mikrobiol. Epidemiol. Immunobiol., 2006, no. 4, pp. 117–120.Google Scholar
  18. 18.
    Maksimova, I.V. and Sidorova, O.A., Light-dependent antibacterial effect of algae and its ecological significance (Review), Gidrobiol. Zh., 1986, vol. 22, pp. 3–11.Google Scholar
  19. 19.
    Vol’berg, M.M., Interaction of the populations of algae and bacteria in a model system, Cand. Sci. (Biol.) Dissertation, Moscow: Mosk. Gos. Univ., 1988.Google Scholar
  20. 20.
    Chang, T., Souichi, O., Ikegamib, N., Miyatab, H., Kashimotob, T., and Kondob, M., Antibiotic substances produced by a marine green alga, Dunaliella primolecta, Biores. Technol., 1993, vol. 44, pp. 149–153.CrossRefGoogle Scholar
  21. 21.
    Ginzburg, M. and Ginzburg, B.Z., Interrelationships of light, temperature, sodium chloride and carbon source in growth of halotolerant and halophilic strains of Dunaliella, Eur. J. Phycol., 1981, vol. 16, pp. 313–324.CrossRefGoogle Scholar
  22. 22.
    Borowitzka, L.J., The microflora. Adaptation to life in extremely saline lakes, Hydrobiologia, 1981, vol. 81, pp. 33–46.CrossRefGoogle Scholar
  23. 23.
    Nikolaev, Yu.A., Plakunov, V.K., Voronina, N.A., Nemtseva, N.V., Plotnikov, A.O., Gogoleva, O.A., Murav’eva, M.E., and Ovechkina, G.V., Effect of bacterial satellites on Chlamydomonas reinhardtii growth in an algo-bacterial community, Mikrobiology (Moscow), 2008, vol. 77, pp. 78–83.Google Scholar
  24. 24.
    Tambiev, A.Kh., Carbohydrate compounds as an example of trophic relationships in natural algal-bacterial associations, Tekhnol. Zhivykh Sist., 2010, no. 1, pp. 28–33.Google Scholar
  25. 25.
    Frankenberger, W.T. and Arshad, M., Phytohormones in Soil: Microbial Production and Function, New York: Marcel Dekker, 1995.Google Scholar
  26. 26.
    Timmusk, S., Nicander, B., Granhall, U., and Tillberg, E., Cytokinin production by Paenibacillus polymyxa, Soil Biol. Biochem., 1999, vol. 31, pp. 1847–1852.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • N. V. Nemtseva
    • 1
    Email author
  • E. A. Selivanova
    • 1
  • M. E. Ignatenko
    • 1
  • N. V. Sharapova
    • 2
  1. 1.Institute of Cellular and Intracellular SymbiosisRussian Academy of Sciences, Ural branchOrenburgRussia
  2. 2.Orenburg State Medicinal AcademyMinistry of Public Health of the Russian FederationOrenburgRussia

Personalised recommendations