Russian Journal of Plant Physiology

, Volume 60, Issue 2, pp 165–175 | Cite as

Current state of the problem of water relations in plants under water deficit

  • G. R. Kudoyarova
  • V. P. Kholodova
  • D. S. Veselov


The review presents current literature data on the mechanisms maintaining plant water balance or those providing for tolerance to its disturbance. We consider the processes enabling the changes in the transpiration rate under water deficit due to changes in stomatal conductivity and the changes in the rate of leaf growth, as well as the role of hydraulic and hormonal (ABA, ethylene, cytokinins) signals in their regulation. Factors involved in the improvement of water use by the regulation of stomatal movements are also regarded, e.g., transcription factors, kinases, GTP-binding proteins, aquaporins participating in CO2 transfer. Negative consequences of stomata closure induced by the disturbances in gas exchange, ROS generation, and accelerated senescence and the ways of their overcoming (with the involvement of antioxidants and cytokinins as factors of senescence delay) are discussed as well. The great attention is paid to the mechanisms maintaining plant growth and transpiration under water deficit due to the optimization of water uptake (modulation of hydraulic conductivity and relative activation of root growth). It is emphasized that the role of ABA in adaptation to water deficit is not limited only to stomatal closure but also concerns the regulation of root growth and assimilate inflow to reproductive organs. Dual significance of this hormone in the growth regulation is considered: direct inhibitory and mediated stimulatory action (via normalization of water relations). The contradictory data about changes in aquaporin capacity for water transfer and their role in the changes of hydraulic conductivity under water deficit are discussed. Apparently, this contradiction may be related to specific features of water transport in various plant species (relative contribution of apoplastic and symplastic pathways) and also to the effects of such factors as an increase in the hydraulic resistance of the apoplast due to the depositions of lignin and suberin, vessel cavitation, and changes in their anatomy on hydraulic conductivity under water deficit.


higher plants water deficit water relations osmotic potential phytohormones stomatal conductivity hydraulic conductivity aquaporins root growth oxidative stress senescence 



stomatal conductivity


hydraulic conductivity




transpiration efficiency


water use efficiency


water potential


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Serraj, R. and Sinclair, T.R., Osmolyte Accumulation: Can It Really Help Increase Crop Yield under Drought Conditions? Plant Cell Environ., 2002, vol. 25, pp. 333–341.PubMedCrossRefGoogle Scholar
  2. 2.
    Castiglioni, P., Warner, D., Bensen, R.J., Anstrom, D.C., Harrison, J., Stoecker, M., Abad, M., Kumar, G., Salvador, S., d’Ordine, R., Navarro, S., Back, S., Fernandes, M., Targolli, J., Dasgupta, S., Bonin, C., Luethy, M.H., and Heard, J.E., Bacterial RNA Chaperones Confer Abiotic Stress Tolerance in Plants and Improved Grain Yield in Maize under Water-Limited Conditions, Plant Physiol., 2008, vol. 147, pp. 446–455.PubMedCrossRefGoogle Scholar
  3. 3.
    Collins, N.C., Tardieu, F., and Tuberosa, R., Quantitative Trait Loci and Crop Performance under Abiotic Stress: Where Do We Stand? Plant Physiol., 2008, vol. 147, pp. 469–486.PubMedCrossRefGoogle Scholar
  4. 4.
    Waines, J.W. and Endaie, B., Domestication and Crop Physiology: Roots of Green-Revolution Wheat, Ann. Bot., 2007, vol. 100, pp. 991–998.PubMedCrossRefGoogle Scholar
  5. 5.
    Gewin, V., Food: An Underground Revolution, Nature, 2010, vol. 466, pp. 552–553.PubMedCrossRefGoogle Scholar
  6. 6.
    Galmes, J., Pou, A., Alsina, M.M., Tomas, M., Medrano, H., and Flexas, J., Aquaporin Expression in Response to Different Water Stress Intensities and Recovery in Richter-110 (Vitis sp.): Relationship with Ecophysiological Status, Planta, 2007, vol. 226, pp. 671–681.PubMedCrossRefGoogle Scholar
  7. 7.
    Sibbernsen, E. and Mott, K.A., Stomatal Responses to Flooding of the Intercellular Air Spaces Suggest a Vapor-Phase Signal between the Mesophyll and the Guard Cell, Plant Physiol., 2010, vol. 153, pp. 1435–1442.PubMedCrossRefGoogle Scholar
  8. 8.
    Jones, H.G., Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology, Cambridge: Cambridge Univ. Press, 1992.Google Scholar
  9. 9.
    Maurel, C., Verdoucq, L., Luu, D.T., and Santoni, V., Plant Aquaporins: Membrane Channels with Multiple Integrated Functions, Ann. Rev. Plant Biol., 2008, vol. 59, pp. 595–624.CrossRefGoogle Scholar
  10. 10.
    Lopez, F., Bousser, A., Sissoeff, I., Gaspar, M., Lachaise, B., Hoarau, J., and Mahe, A., Diurnal Regulation of Water Transport and Aquaporin Gene Expression in Maize Roots: Contribution of PIP2 Proteins, Plant Cell Physiol., 2003, vol. 44, pp. 1384–1395.PubMedCrossRefGoogle Scholar
  11. 11.
    Abdeeva, A.R., Kholodova, V.P., and Kuznetsov, Vl.V., Expression of Aquaporin Genes in the Common Ice Plant during Induction of the Water-Saving Mechanism of CAM Photosynthesis under Salt Stress Conditions, Dokl. Biol. Nauk, 2008, vol. 418, pp. 30–33.CrossRefGoogle Scholar
  12. 12.
    Takase, T., Ishikawa, H., Murakami, H., Kikuchi, J., Sato-Nara, K., and Suzuki, H., The Circadian Clock Modulates Water Dynamics and Aquaporin Expression in Arabidopsis Roots, Plant Cell Physiol., 2011, vol. 52, pp. 373–383.PubMedCrossRefGoogle Scholar
  13. 13.
    Franks, P.J., Drake, P.L., and Froend, R.H., Anisohydric but Isohydrodynamic: Seasonally Constant Plant Water Potential Gradient Explained by a Stomatal Control Mechanism Incorporating Variable Plant Hydraulic Conductance, Plant Cell Environ., 2007, vol. 30, pp. 19–30.PubMedCrossRefGoogle Scholar
  14. 14.
    Roelfsema, M.R.G. and Hedrich, R., In the Light of Stomatal Opening: New Insights into “The Watergate”, New Phytol., 2005, vol. 167, pp. 665–691.PubMedCrossRefGoogle Scholar
  15. 15.
    Luan, S., Signaling Drought in Guard Cells, Plant Cell Environ., 2002, vol. 25, pp. 229–237.PubMedCrossRefGoogle Scholar
  16. 16.
    Wilkinson, S. and Davies, W.J., Drought, Ozone, ABA and Ethylene: New Insights from Cell to Plant to Community, Plant Cell Environ., 2010, vol. 33, pp. 510–525.PubMedCrossRefGoogle Scholar
  17. 17.
    Lozano-Juste, J. and Leon, J., Enhanced Abscisic Acid-Mediated Responses in nia1nia2noa1-2 Triple Mutant Impaired in NIA/NR- and AtNOA1-Dependent Nitric Oxide Biosynthesis in Arabidopsis, Plant Physiol., 2010, vol. 152, pp. 891–903.PubMedCrossRefGoogle Scholar
  18. 18.
    Chen, J.H., Jiang, H.W., Hsieh, E.J., Chen, H.Y., Chien, C.T., Hsieh, H.L., and Lin, T.P., Drought and Salt Stress Tolerance of an Arabidopsis Glutathione S-Transferase U17 Knockout Mutant Are Attributed to the Combined Effect of Glutathione and Abscisic Acid, Plant Physiol., 2012, vol. 158, pp. 340–351.PubMedCrossRefGoogle Scholar
  19. 19.
    Wang, Y., Beaith, M., Chalifoux, M., Ying, J., Uchacz, T., Sarvas, C., Griffiths, R., Kuzma, M., Wan, J., and Huang, Y., Shoot-Specific Down-Regulation of Protein Farnesyltransferase (α-Subunit) for Yield Protection against Drought in Canola, Mol. Plant, 2009, vol. 2, pp. 191–200.PubMedCrossRefGoogle Scholar
  20. 20.
    Shatil-Cohen, A., Attia, Z., and Moshelion, M., Bundle-Sheath Cell Regulation of Xylem-Mesophyll Water Transport via Aquaporins under Drought Stress: A Target of Xylem-Borne ABA? Plant J., 2011, vol. 67, pp. 72–80.PubMedCrossRefGoogle Scholar
  21. 21.
    Li, B., Feng, Z., Xie, M., Sun, M., Zhao, Y., Liang, L., Liu, G., Zhang, J., and Jia, W., Modulation of the Root-Sourced ABA Signal along Its Way to the Shoot in Vitis ripariax × Vitis labrusca under Water Deficit, J. Exp. Bot., 2011, vol. 62, pp. 1731–1741.PubMedCrossRefGoogle Scholar
  22. 22.
    Sharp, R.G. and Davies, W.J., Variability among Species in the Apoplastic pH Signaling Response to Drying Soils, J. Exp. Bot., 2009, vol. 60, pp. 4363–4370.PubMedCrossRefGoogle Scholar
  23. 23.
    Fan, X.W., Li, F.M., Song, L., Xiong, Y.C., An, L.Z., Yu, J.Yu., and Fang, X.W., Defense Strategy of Old and Modern Spring Wheat Varieties during Soil Drying, Physiol. Plant., 2009, vol. 136, pp. 310–323.PubMedCrossRefGoogle Scholar
  24. 24.
    Kholodova, V.P., Meshcheryakov, A.B., Rakitin, V.Yu., Karyagin, V.V., and Kuznetsov, Vl.V., Hydraulic Signal as a “Primary Messenger of Water Deficit” under Salt Stress in Plants, Dokl. Biol. Nauk, 2006, vol. 407, pp. 155–157.CrossRefGoogle Scholar
  25. 25.
    Mott, K.A., Leaf Hydraulic Conductivity and Stomatal Responses to Humidity in Amphistomatous Leaves, Plant Cell Environ., 2007, vol. 30, pp. 1444–1449.PubMedCrossRefGoogle Scholar
  26. 26.
    Arend, M., Schnitzler, J., Ehlting, B., Hansch, R., Lange, T., Rennenberg, H., Himmelbach, A., Grill, E., and Fromm, J., Expression of the Arabidopsis Mutant abi1 Gene Alters Abscisic Acid Sensitivity, Stomatal Development, and Growth Morphology in Gray Poplars, Plant Physiol., 2009, vol. 151, pp. 2110–2119.PubMedCrossRefGoogle Scholar
  27. 27.
    Akhiyarova, G.V., Sabirzhanova, I.B., Veselov, D.S., and Frike, V., Participation of Plant Hormones in Growth Resumption of Wheat Shoots Following Short-Term NaCl Treatment, Russ. J. Plant Physiol., 2005, vol. 52, pp. 788–792.CrossRefGoogle Scholar
  28. 28.
    Nelson, D.E., Repetti, P.P., Adams, T.R., Creelman, R.A., Jingrui, W.-J., Warner, D.C., Anstrom, D.C., Bensen, R.J., Castiglioni, P.P., Donnarummo, M.G., Hinchey, B.S., Kumimoto, R.W., Maszle, D.R., Canales, R.D., Krolikowski, K.A., Dotson, S.B., Gutterson, N., Ratcliffe, O.J., and Heard, J.H., Plant Nuclear Factor Y (NF-Y) B Subunits Confer Drought Tolerance and Lead to Improved Corn Yields on Water-Limited Acres, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 16450–16455.PubMedCrossRefGoogle Scholar
  29. 29.
    Chaves, M.M., Flexas, J., and Pinheiro, C., Photosynthesis under Drought and Salt Stress: Regulation Mechanisms from Whole Plant to Cell, Ann. Bot., 2009, vol. 103, pp. 551–560.PubMedCrossRefGoogle Scholar
  30. 30.
    Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q., and Xiong, L., Overexpressing a NAM, ATAF, and CUC (NAC) Transcription Factor Enhances Drought Resistance and Salt Tolerance in Rice, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 12987–12992.PubMedCrossRefGoogle Scholar
  31. 31.
    Nilson, S.E., Sarah, M., and Assmann, S.M., The α-Subunit of the Arabidopsis Heterotrimeric G Protein, GPA1, Is a Regulator of Transpiration Efficiency, Plant Physiol., 2010, vol. 152, pp. 2067–2077.PubMedCrossRefGoogle Scholar
  32. 32.
    Sade, N., Gebretsadik, M., Seligmann, R., Schwartz, A., Wallach, R., and Moshelion, M., The Role of Tobacco Aquaporin1 in Improving Water Use Efficiency, Hydraulic Conductivity, and Yield Production under Salt Stress, Plant Physiol., 2010, vol. 152, pp. 245–254.PubMedCrossRefGoogle Scholar
  33. 33.
    Kholova, J., Hash, C.T., Kumar, L.P., Yadav, R.S., Kocova, M., and Vadez, V., Terminal Drought-Tolerant Pearl Millet [Pennisetum glaucum (L.) R. Br.] Have High Leaf ABA and Limit Transpiration at High Vapour Pressure Deficit, J. Exp. Bot., 2010, vol. 61, pp. 1431–1440.PubMedCrossRefGoogle Scholar
  34. 34.
    Kholodova, V.P., Neto, D.S., Meshcheryakov, A.B., Borisova, N.N., Aleksandrova, S.N., and Kuznetsov, Vl.V., Can Stress-Induced CAM Provide for the Performing the Developmental Program in Mesembryanthemum crystallinum Plants under Long-Term Salinity? Russ. J. Plant Physiol., 2002, vol. 49, pp. 336–343.CrossRefGoogle Scholar
  35. 35.
    Zhang, X., Wollenweber, B., Jiang, D., Liu, F., and Zhao, J., Water Deficit and Heat Shock Effects on Photosynthesis of a Transgenic Arabidopsis thaliana Constitutively Expressing ABP9, a bZIP Transcription Factor, J. Exp. Bot., 2008, vol. 59, pp. 839–848.PubMedCrossRefGoogle Scholar
  36. 36.
    Lawlor, D.W. and Tezara, W., Causes of Decreased Photosynthetic Rate and Metabolic Capacity in Water-Deficient Leaf Cells: A Critical Evaluation of Mechanisms and Integration of Processes, Ann. Bot., 2009, vol. 103, pp. 561–579.PubMedCrossRefGoogle Scholar
  37. 37.
    Merewitz, E.B., Gianfagna, T., and Huang, B., Protein Accumulation in Leaves and Roots Associated with Improved Drought Tolerance in Creeping Bentgrass Expressing an ipt Gene for Cytokinin Synthesis, J. Exp. Bot., 2011, vol. 62, pp. 5311–5333.PubMedCrossRefGoogle Scholar
  38. 38.
    Matysik, J., Alia, Bhalu, B., and Mohanty, P., Molecular Mechanisms of Quenching of Reactive Oxygen Species by Proline under Stress in Plants, Curr. Sci., 2002, vol. 82, pp. 525–532.Google Scholar
  39. 39.
    Scoffoni, C., Rawls, M., McKown, A., Cochard, H., and Sack, L., Decline of Leaf Hydraulic Conductance with Dehydration: Relationship to Leaf Size and Venation Architecture, Plant Physiol., 2011, vol. 156, pp. 832–843.PubMedCrossRefGoogle Scholar
  40. 40.
    Pantin, F., Simonneau, T., Rolland, G., Dauzat, M., and Muller, B., Control of Leaf Expansion: A Developmental Switch from Metabolics to Hydraulics, Plant Physiol., 2011, vol. 156, pp. 803–815.PubMedCrossRefGoogle Scholar
  41. 41.
    Neumann, P., Coping Mechanisms for Crop Plants in Drought-Prone Environments, Ann. Bot., 2008, vol. 101, pp. 901–907.PubMedCrossRefGoogle Scholar
  42. 42.
    Park, J.-E., Park, J.Y., Kim, Y.-S., Staswick, P.E., Jeon, J., Yun, J., Kim, S.-Y., Kim, J., Lee, Y.-H., and Park, C.-M., GH3-Mediated Auxin Homeostasis Links Growth Regulation with Stress Adaptation Response in Arabidopsis, J. Biol. Chem., 2007, vol. 282, pp. 10 036–10 046.Google Scholar
  43. 43.
    Tardieu, F., Parent, B., and Simonneau, T., Control of Leaf Growth by Abscisic Acid: Hydraulic or Non-Hydraulic Processes? Plant Cell Environ., 2010, vol. 33, pp. 636–647.PubMedCrossRefGoogle Scholar
  44. 44.
    Tardieu, F., Plant Tolerance to Water Deficit: Physical Limits and Possibilities for Progress, Compt. R. GeoSci., 2005, vol. 337, pp. 57–67.CrossRefGoogle Scholar
  45. 45.
    Welcker, C., Boussuge, B., Bencivenni, C., Ribaut, J.M., and Tardieu, F., Are Source and Sink Strengths Genetically Linked in Maize Plants Subjected to Water Deficit? A QTL Study of the Responses of Leaf Growth and of Anthesis-Silking Interval to Water Deficit, J. Exp. Bot., 2007, vol. 58, pp. 339–349.PubMedCrossRefGoogle Scholar
  46. 46.
    McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D.G., and Yepez, E.A., Mechanisms of Plant Survival and Mortality during Drought: Why Do Some Plants Survive While Others Succumb to Drought? New Phytol., 2008, vol. 178, pp. 719–739.PubMedCrossRefGoogle Scholar
  47. 47.
    Ji, X., Dong, B., Shiran, B., Talbot, M.T., Edlington, J.E., Hughes, T., White, R.G., Gubler, F., and Dolferus, R., Control of Abscisic Acid Catabolism and Abscisic Acid Homeostasis Is Important for Reproductive Stage Stress Tolerance in Cereals, Plant Physiol., 2011, vol. 156, pp. 647–662.PubMedCrossRefGoogle Scholar
  48. 48.
    Veselov, D.S., Sharipova, G.V., Veselov, S.U., and Kudoyarova, G.R., The Effects of NaCl Treatment on Water Relations, Growth and ABA Content in Barley Cultivars Differing in Drought Tolerance, J. Plant Growth Regul., 2008, vol. 27, pp. 380–386.CrossRefGoogle Scholar
  49. 49.
    Veselova, S.V., Farkhutdinov, R.G., Veselov, D.S., and Kudoyarova, G.R., Role of Cytokinins in the Regulation of Stomatal Conductance of Wheat Seedlings under Conditions of Rapidly Changing Local Temperature, Russ. J. Plant Physiol., 2006, vol. 53, pp. 756–761.CrossRefGoogle Scholar
  50. 50.
    Jang, I.-C., Oh, S.-J., Se, J.-S., Choi, W.-B., Song, S.I., Kim, C.H., Kim, Y.S., Seo, H.-S., Choi, Y.D., Nahm, B.H., and Kim, J.-K., Expression of a Bifunctional Fusion of the Escherichia coli Genes for Trehalose-6-Phosphate Synthase and Trehalose-6-Phosphate Phosphatase in Transgenic Rice Plants Increases Trehalose Accumulation and Abiotic Stress Tolerance Without Stunting Growth, Plant Physiol., 2003, vol. 131, pp. 516–524.PubMedCrossRefGoogle Scholar
  51. 51.
    Guo, P., Baum, M., Grando, S., Ceccarelli, S., Bai, G., Li, R., von Korff, M., Varshney, R.K., Graner, A., and Valkoun, J., Differentially Expressed Genes between Drought-Tolerant and Drought-Sensitive Barley Genotypes in Response to Drought Stress during the Reproductive Stage, J. Exp. Bot., 2009, vol. 60, pp. 3531–3544.PubMedCrossRefGoogle Scholar
  52. 52.
    Rivero, R.M., Kojima, M., Gepstein, A., Sakakibara, H., Mittler, R., Gepstein, S., and Blumwald, E., Delayed Leaf Senescence Induces Extreme Drought Tolerance in a Flowering Plant, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 19631–19636.PubMedCrossRefGoogle Scholar
  53. 53.
    Zhang, H., Xue, Y., Wang, Z., Yang, J., and Zhang, J., Morphological and Physiological Traits of Roots and Their Relationships with Shoot Growth in ’super’ Rice, Field Crops Res., 2009, vol. 113, pp. 31–40.CrossRefGoogle Scholar
  54. 54.
    Sobrado, M.A., Relationship of Water Transport to Anatomical Features in the Mangrove Laguncularia racemosa Grown under Contrasting Salinities, New Phytol., 2007, vol. 173, pp. 584–591.PubMedCrossRefGoogle Scholar
  55. 55.
    Secchi, F. and Zwieniecki, M.A., Patterns of PIP Gene Expression in Populus trichocarpa during Recovery from Xylem Embolism Suggest a Major Role for the PIP1 Aquaporin Subfamily as Moderators of Refilling Process, Plant Cell Environ., 2010, vol. 33, pp. 1285–1297.PubMedCrossRefGoogle Scholar
  56. 56.
    Anisimov, A.V., Ionenko, I.F., and Romanov, A.V., Spin-Echo NMR Study of the Translational Water Diffusion Selectively along the Apoplast and the Cytoplasmic and Vacuolar Symplasts of Plants, Biophysics, 2004, vol. 49, pp. 816–821.Google Scholar
  57. 57.
    Kuznetsov, Vas.V., Kholodova, V.P., Kuznetsov, Vl.V., and Yagodin, B.A., Selen Regulates Water Relations in Plants under Drought Stress, Dokl. Akad. Nauk, 2003, vol. 390, pp. 713–715.Google Scholar
  58. 58.
    Vysotskaya, L.B., Arkhipova, T.N., Timergalina, L.N., Dedov, A.V., Veselov, S.Y., and Kudoyarova, G.R., Effect of Partial Root Excision on Transpiration, Root Hydraulic Conductance, and Leaf Growth in Wheat Seedlings, Plant Physiol. Biochem., 2004, vol. 42, pp. 251–255.PubMedCrossRefGoogle Scholar
  59. 59.
    Kudoyarova, G., Veselova, S., Hartung, W., Farhutdinov, R., Veselov, D., and Sharipova, G., Involvement of Root ABA and Hydraulic Conductivity in the Control of Water Relations in Wheat Plants Exposed to Increased Evaporation Demand, Planta, 2011, vol. 233, pp. 87–94.PubMedCrossRefGoogle Scholar
  60. 60.
    Steudle, E. and Peterson, C.A., How Does Water Get through Roots? J. Exp. Bot., 1998, vol. 49, pp. 775–788.Google Scholar
  61. 61.
    Gilliham, M., Dayod, M., Hocking, B.J., Xu, B., Conn, S.J., Kaiser, B.N., Leigh, R.A., and Tyerman, S.D., Calcium Delivery and Storage in Plant Leaves: Exploring the Link with Water Flow, J. Exp. Bot., 2011, vol. 62, pp. 2233–2250.PubMedCrossRefGoogle Scholar
  62. 62.
    Vandeleur, R.K., Mayo, G., Shelden, M.C., Gilliham, M., Kaiser, B.N., and Tyerman, S.D., The Role of Plasma Membrane Intrinsic Protein Aquaporins in Water Transport through Roots: Diurnal and Drought Stress Responses Reveal Different Strategies between Isohydric and Anisohydric Cultivars of Grapevine, Plant Physiol., 2009, vol. 149, pp. 445–460.PubMedCrossRefGoogle Scholar
  63. 63.
    Smith, S.E., Facelli, E., Pope, S., and Smith, F.A., Plant Performance in Stressful Environments: Interpreting New and Established Knowledge of the Roles of Arbuscular Mycorrhizas, Plant Soil, 2010, vol. 326, pp. 3–20.CrossRefGoogle Scholar
  64. 64.
    Draye, X., Kim, Y., Lobet, G., and Javaux, M., Model-Assisted Integration of Physiological and Environmental Constraints Affecting the Dynamic and Spatial Patterns of Root Water Uptake from Soils, J. Exp. Bot., 2010, vol. 61, pp. 2145–2155.PubMedCrossRefGoogle Scholar
  65. 65.
    Sack, L. and Holbrook, N.M., Leaf Hydraulics, Ann. Rev. Plant Biol., 2006, vol. 57, pp. 361–381.CrossRefGoogle Scholar
  66. 66.
    Gasco, A., Nardini, A., Gorta, E., and Salleo, S., Ion-Mediated Increase in the Hydraulic Conductivity of Laurel Stems: Role of Pits and Consequences for the Impact of Cavitation on Water Transport, Plant Cell Environ., 2006, vol. 29, pp. 1946–1955.PubMedCrossRefGoogle Scholar
  67. 67.
    Ionenko, I.F. and Anisimov, A.V., Differential Sensitivities of Water Diffusion in Maize Root Cortex and Stele to HgCl2-Induced Blockade of Aquaporins, Russ. J. Plant Physiol., 2008, vol. 55, pp. 328–332.CrossRefGoogle Scholar
  68. 68.
    Scoffoni, C., McKown, A.D., Rawls, M., and Sack, L., Dynamics of Leaf Hydraulic Conductance with Water Status: Quantification and Analysis of Species Differences under Steady State, J. Exp. Bot., 2012, vol. 63, pp. 643–658.PubMedCrossRefGoogle Scholar
  69. 69.
    Ktitorova, I.N., Skobeleva, O.V., Sharova, E.I., and Ermakov, E.I., Hydrogen Peroxide Appears to Mediate a Decrease in Hydraulic Conductivity in Wheat Roots under Salt Stress, Russ. J. Plant Physiol., 2002, vol. 49, pp. 369–380.CrossRefGoogle Scholar
  70. 70.
    Ampilogova, Ya.N., Zhestkova, I.M., and Trofimova, M.S., Redox Modulation of Osmotic Water Permeability in Plasma Membranes Isolated from Roots and Shoots of Pea Seedlings, Russ. J. Plant Physiol., 2006, vol. 53, pp. 622–628.CrossRefGoogle Scholar
  71. 71.
    Kline, K.G., Barrett-Wilt, G.A., and Sussman, M.R., In Planta Changes in Protein Phosphorylation Induced by the Plant Hormone Abscisic Acid, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, pp. 15 986–15 991.CrossRefGoogle Scholar
  72. 72.
    Lian, H.L., Xin, Y., Ye, Q., Ding, X.D., Kitagawa, Y., Kwak, S.S., Su, W.A., and Tang, Z.C., The Role of Aquaporin RWC3 in Drought Avoidance in Rice, Plant Cell Physiol., 2004, vol. 45, pp. 481–489.PubMedCrossRefGoogle Scholar
  73. 73.
    Vysotskaya, L., Hedley, P.E., Sharipova, G., Veselov, D., Kudoyarova, G., Morris, J., and Jones, H.G., Effect of Salinity on Water Relations of Wild Barley Plants Differing in Salt Tolerance, AoB Plants, 2010, doi 10.1093/aobpla/plq006Google Scholar
  74. 74.
    Hachez, C., Veselov, D., Ye, Q., Reinhardt, H., Knipfer, T., Fricke, W., and Chaumont, F., Short-Term Control of Maize Cell and Root Water Permeability through Plasma Membrane Aquaporin Isoforms, Plant Cell Environ., 2012, vol. 35, pp. 185–198.PubMedCrossRefGoogle Scholar
  75. 75.
    Katsuhara, M. and Hanba, Y.T., Barley Plasma Membrane Intrinsic Proteins (PIP Aquaporins) as Water and CO2 Transporters, Eur. J. Physiol., 2008, vol. 456, pp. 687–691.CrossRefGoogle Scholar
  76. 76.
    Ivanov, V.B., Kletochnye mekhanizmy rosta rastenii. 68-e Timiryazevskoe chtenie (Cell Mechanisms of Plant Growth, the 68th Timiryazev Lecture), Moscow: Nauka, 2011.Google Scholar
  77. 77.
    Bengough, A.G., McKenzie, B.M., Hallett, P.D., and Valentine, T.A., Root Elongation, Water Stress, and Mechanical Impedance: A Review of Limiting Stresses and Beneficial Root Tip Traits, J. Exp. Bot., 2011, vol. 62, pp. 59–68.PubMedCrossRefGoogle Scholar
  78. 78.
    Skobeleva, O.V., Ktitorova, I.N., and Agal’tsov, K.G., Accelerated Root Growth Induced by Nitrate Deficit Is Related to Apoplast Acidification, Russ. J. Plant Physiol., 2010, vol. 57, pp. 485–493.CrossRefGoogle Scholar
  79. 79.
    Chen, G., Shi, Q., Lips, S.H., and Sagi, M., Comparison of Growth of flacca and Wild-Type Tomato Grown under Conditions Diminishing Their Differences in Stomatal Control, Plant Sci., 2003, vol. 164, pp. 753–757.CrossRefGoogle Scholar
  80. 80.
    Yamaguchi, M. and Sharp, R., Complexity and Coordination of Root Growth at Low Water Potentials: Recent Advances from Transcriptomic and Proteomic Analyses, Plant Cell Environ., 2010, vol. 33, pp. 590–603.PubMedCrossRefGoogle Scholar
  81. 81.
    Werner, T., Nehnevajova, E., Kollmer, I., Novak, O., Strnad, M., Kramer, U., and Schmülling, T., Root-Specific Reduction of Cytokinin Causes Enhanced Root Growth, Drought Tolerance, and Leaf Mineral Enrichment in Arabidopsis and Tobacco, Plant Cell, 2010, vol. 22, pp. 3905–3920.PubMedCrossRefGoogle Scholar
  82. 82.
    Zhao, Y., Hu, Y., Dai, M., Huang, L., and Zhou, D.-X., The WUSCHEL-Related Homeobox Gene WOX11 Is Required to Activate Shoot-Borne Crown Root Development in Rice, Plant Cell, 2009, vol. 21, pp. 736–748.PubMedCrossRefGoogle Scholar
  83. 83.
    Wiegers, B.S., Cheer, A.Y., and Silk, W.K., Modeling the Hydraulics of Root Growth in Three Dimensions with Phloem Water Sources, Plant Physiol., 2009, vol. 150, pp. 2092–2103.PubMedCrossRefGoogle Scholar
  84. 84.
    Peret, B., Larrieu, A., and Bennett, M.J., Lateral Root Emergence: A Difficult Birth, J. Exp. Bot., 2011, vol. 62, pp. 59–68.CrossRefGoogle Scholar
  85. 85.
    Xiong, L., Wang, R.G., Mao, G., and Koczan, J.M., Identification of Drought Tolerance Determinants by Genetic Analysis of Root Response to Drought Stress and Abscisic Acid, Plant Physiol., 2006, vol. 142, pp. 1065–1074.PubMedCrossRefGoogle Scholar
  86. 86.
    Ploshchinskaya, M.E., Ivanov, V.B., Salmin, S.A., and Bystrova, E.I., Analysis of Possible Mechanisms of Root Branching Regulation, Zh. Obshch. Biol., 2002, vol. 63, pp. 68–74.Google Scholar
  87. 87.
    Wang, Y., Suo, H., Zheng, Y., Liu, K., Zhuang, C., Kahle, K.T., Hong, M.H., and Yan, X., The Soybean Root-Specific Protein Kinase GmWNK1 Regulates Stress-Responsive ABA Signaling on the Root System Architecture, Plant J., 2010, vol. 64, pp. 230–242.PubMedCrossRefGoogle Scholar
  88. 88.
    Reynolds, M., Dreccer, F., and Trethowan, R., Drought Adaptive Traits Derived from Wheat Wild Relatives and Landraces, J. Exp. Bot., 2007, vol. 58, pp. 177–186.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • G. R. Kudoyarova
    • 1
  • V. P. Kholodova
    • 2
  • D. S. Veselov
    • 1
  1. 1.Institute of Biology, Ufa Research CenterRussian Academy of SciencesUfa, BashkortostanRussia
  2. 2.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations