Advertisement

Russian Journal of Plant Physiology

, Volume 59, Issue 4, pp 479–490 | Cite as

Mobile signals in day length-regulated flowering: Gibberellins, flowering locus T, and sucrose

  • R. W. KingEmail author
Reviews

Abstract

Despite low activity for stem growth, the gibberellins GA5 and GA6 act as long-day (LD) florigens in Lolium temulentum L. This claim is based on extensive evidence covering GA synthesis in LD in the induced leaf and their transport to the shoot apex where they act in a dose-dependent manner. GAs also act as a LD florigen in association with cold vernalization of L. perenne. In contrast, highly bioactive GA4 and, possibly, GA1 are important florigens in Arabidopsis thaliana (L.) Heynh. This species contrast reflects differences in GA deactivation, which is unimportant for Arabidopsis but dominant in L. temulentum. It is unclear if GAs participate in flowering responses of short-day (SD) species since it is LD, which up-regulate enzymes for GA biosynthesis. Sugars (sucrose) may also act directly as a florigen and, specifically, with increase in photosynthesis as in LD or when light intensity is increased in SD. In addition, in LD sucrose can indirectly cause flowering by up-regulating FT expression, the FT protein acting as a further leaf-to-apex transported florigen. Thus, there are not only multiple florigens but there can be complex interactions between the signaling pathways controlling production of these various florigens.

Keywords

Arabidopsis Lolium temulentum flowering FT gibberellin GA synthesis and deactivation long day plants multiple florigens sucrose 

Abbreviations

FR

far-red light

FT

Flowering Locus T

GA

gibberellin

LD

long day

SD

short day

TNE

trinexapac ethyl

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chailakhyan, M.Kh., New Facts in Support of the Hormonal Theory of Plant Development, Dokl. Akad. Nauk SSSR, 1936, vol. 4, pp. 79–83.Google Scholar
  2. 2.
    Knott, J.E., Effect of a Localized Photoperiod on Spinach, Proc. Amer. Soc. Hort. Sci., 1934, vol. 31, pp. 152–154.Google Scholar
  3. 3.
    Chailakhyan, M.Kh., Hormonal Regulation of Plant Flowering, Sov. Plant Physiol., 1976, vol. 23, pp. 1160–1173.Google Scholar
  4. 4.
    Zeevaart, J.A.D., Gibberellins and Flowering, The Biochemistry and Physiology of Gibberellins, Crozier, H., Ed., New York: Praeger, 1983, pp. 333–373.Google Scholar
  5. 5.
    Pharis, R.P. and King, R.W., Gibberellins and Reproductive Development in Seed Plants, Annu. Rev. Plant Physiol., 1985, vol. 36, pp. 517–568.CrossRefGoogle Scholar
  6. 6.
    Zeevaart, J.A.D., Florigen Coming of Age after 70 Years, Plant Cell, 2006, vol. 18, pp. 1783–1789.PubMedCrossRefGoogle Scholar
  7. 7.
    Corbesier, L., Vincent, C., Jang, S.H., Fornara, F., Fan, Q.Z., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., and Coupland, G., FT Protein Movement Contributes to Long-Distance Signaling in Floral Induction of Arabidopsis, Science, 2007, vol. 316, pp. 1030–1033.PubMedCrossRefGoogle Scholar
  8. 8.
    Tamaki, S., Matsuo, S., Wong, H.L., Yokoi, S., and Shimamoto, K., Hd3a Protein Is a Mobile Flowering Signal in Rice, Science, 2007, vol. 316, pp. 1033–1036.PubMedCrossRefGoogle Scholar
  9. 9.
    Turck, F., Fornara, F., and Coupland, G., Regulation and Identity of Florigen: Flowering Locus T Moves Center Stage, Annu. Rev. Plant Biol., 2008, vol. 59, pp. 573–594.PubMedCrossRefGoogle Scholar
  10. 10.
    Turnbull, C.N., Long-Distance Regulation of Flowering Time, J. Exp. Bot., 2011, vol. 62, pp. 4399–4413.PubMedCrossRefGoogle Scholar
  11. 11.
    King, R.W. and Evans, L.T., Gibberellins and Flowering of Grasses and Cereals, Prizing Open the Lid of the “Florigen” Black Box, Annu. Rev. Plant Biol., 2003, vol. 54, pp. 307–328.PubMedCrossRefGoogle Scholar
  12. 12.
    King, R.W., Mander, L.N., Asp, T., MacMillan, C.P., Blundell, C.A., and Evans, L.T., Selective Deactivation of Gibberellins below the Shoot Apex Is Critical to Flowering but Not to Stem Elongation of Lolium, Mol. Plant, 2008, vol. 1, pp. 295–307.PubMedCrossRefGoogle Scholar
  13. 13.
    Hisamatsu, T. and King, R.W., The Nature of Floral Signals in Arabidopsis: Roles for FLOWERING LOCUS T (FT) and Gibberellin, J. Exp. Bot., 2008, vol. 59, pp. 3821–3829.PubMedCrossRefGoogle Scholar
  14. 14.
    King, R.W., Hisamatsu, T., Goldschmidt, E.E., and Blundell, C., Photosynthesis and Far-Red Light Independently Regulate Flowering but by Increasing Expression of FLOWERING LOCUS T (FT), J. Exp. Bot., 2008, vol. 59, pp. 3811–3820.PubMedCrossRefGoogle Scholar
  15. 15.
    Evans, L.T., Inflorescence Initiation in Lolium temulentum L. V. The Role of Auxins and Gibberellins, Aust. J. Biol. Sci., 1964, vol. 17, pp. 10–23.Google Scholar
  16. 16.
    King, R.W., Moritz, T., Evans, L.T., Martin, J., Andersen, C.H., Blundell, C., Kardailsky, I., and Chandler, P.M., Regulation of Flowering in the Long Day Grass, Lolium temulentum L., by Gibberellins and the Gene, FLOWERING LOCUS T (FT), Plant Physiol., 2006, vol. 141, pp. 498–507.Google Scholar
  17. 17.
    King, R.W., Moritz, T., Evans, L.T., Junttila, O., and Herlt, A.J., Long Day Induction of Flowering in Lolium temulentum Involves Sequential Increases in Specific Gibberellins at the Shoot Apex, Plant Physiol., 2001, vol. 127, pp. 624–632.PubMedCrossRefGoogle Scholar
  18. 18.
    MacMillan, C.P., Blundell, C.A., and King, R.W., Flowering of the Grass Lolium perenne L.: Effects of Vernalization and Long Days on Gibberellin Biosynthesis and Signaling, Plant Physiol., 2005, vol. 138, pp. 1794–1806.PubMedCrossRefGoogle Scholar
  19. 19.
    Gocal, G.F.W., Gubler, F., Poole, A.T., Watts, R.J., Blundell, C., and King, R.W., Long Day Up-Regulation of Lolium GAMyb Expression during Early Stages of Inflorescence Formation, Plant Physiol., 1999, vol. 119, pp. 1271–1278.PubMedCrossRefGoogle Scholar
  20. 20.
    Evans, L.T., Borthwick, H.A., and Hendricks, S.B., Inflorescence Initiation in Lolium temulentum L. VII. The Spectral Dependence of Induction, Aust. J. Biol. Sci., 1965, vol. 18, pp. 745–762.Google Scholar
  21. 21.
    Hisamatsu, T., King, R.W., Helliwell, C.A., and Koshioka, M., The Involvement of Gibberellin 20-Oxidase Genes in Phytochrome-Regulated Petiole Elongation of Arabidopsis, Plant Physiol., 2005, vol. 138, pp. 1106–1116.PubMedCrossRefGoogle Scholar
  22. 22.
    King, R.W. and Ben-Tal, Y., A Florigenic Effect of Sucrose in Fuchsia and Its Inhibition by Gibberellin-Induced Assimilate Competition, Plant Physiol., 2001, vol. 125, pp. 1–9.CrossRefGoogle Scholar
  23. 23.
    Friend, D.J.C., Bodson, M., and Bernier, G., Promotion of Flowering in Brassica campestris L. cv. Ceres by Sucrose, Plant Physiol., 1983, vol. 75, pp. 1085–1089.CrossRefGoogle Scholar
  24. 24.
    King, R.W. and Evans, L.T., Shoot Apex Sugars in Relation to Long-Day Induction of Flowering in Lolium temulentum L., Aust. J. Plant Physiol., 1991, vol. 18, pp. 121–135.CrossRefGoogle Scholar
  25. 25.
    McDaniel, C.N., King, R.W., and Evans, L.T., Floral Determination and In-Vitro Floral Differentiation in Isolated Shoot Apices of Lolium temulentum L., Planta, 1991, vol. 185, pp. 9–16.CrossRefGoogle Scholar
  26. 26.
    Evans, L.T. and Wardlaw, I.F., Independent Translocation of 14C-Labelled Assimilates and of the Floral Stimulus in Lolium temulentum, Planta, 1966, vol. 68, pp. 319–326.CrossRefGoogle Scholar
  27. 27.
    King, R.W., Blundell, C., and Evans, L.T., The Behaviour of Shoot Apices of Lolium temulentum In Vitro as the Basis of an Assay System for Florigenic Extracts, Aust. J. Plant Physiol., 1993, vol. 20, pp. 337–348.CrossRefGoogle Scholar
  28. 28.
    Evans, L.T., King, R.W., Chu, A., Mander, L.N., and Pharis, R.P., Gibberellin Structure and Florigenic Activity in Lolium temulentum, a Long-Day Plant, Planta, 1990, vol. 182, pp. 97–106.CrossRefGoogle Scholar
  29. 29.
    King, R.W., Evans, L.T., Mander, L.M., Moritz, T., Pharis, R.P., and Twitchin, B., Synthesis of Gibberellin GA6 and Examination of Its Role in Flowering of Lolium temulentum, Phytochemistry, 2003, vol. 62, pp. 77–82.PubMedCrossRefGoogle Scholar
  30. 30.
    Yamauchi, Y., Takeda-Kamiya, N., Hanada, A., Ogawa, M., Kuwahara, A., Seo, M., Kamiya, Y., and Yamaguchi, S., Contribution of Gibberellin Deactivation by Atga2ox2 to the Suppression of Germination of Dark-Imbibed Arabidopsis thaliana Seeds, Plant Cell Physiol., 2007, vol. 48, pp. 555–561.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhu, Y.Y., Nomura, T., Xu, Y., Zhang, Y., Peng, Y., Mao, B., Hanada, A., Zhou, H., Wang, R., Li, P., Zhu, X., Mander, L.N., Kamiya, Y., Yamaguchi, S., and He, Z., Elongated Uppermost Internode Encodes a Cytochrome P450 Monooxygenase That Epoxidizes Gibberellins in a Novel Deactivation Reaction in Rice, Plant Cell, 2006, vol. 18, pp. 442–456.PubMedCrossRefGoogle Scholar
  32. 31a.
    Varbanova, M., Yamaguchi, S., Yang, Y., McKelvey, K., Hanada, A., Borochov, R., Yu, F., Jikumaru, Y., Ross, J., Cortes, D., Ma, C.J., Noel, J.P., Mander, L., Shulaev, V., Kamiya, Y., Rodermel, S., Weiss, D., and Pichersky, E., Methylation of Gibberellins by Arabidopsis Gamt1 and Gamt2, Plant Cell, 2007, vol. 19, pp. 1040–1051.Google Scholar
  33. 32.
    Sakamoto, T., Kobayashi, M., Itoh, H., Tagiri, A., Kayano, T., Tanaka, H., Iwahori, S., and Matsuoka, M., Expression of a Gibberellin 2-Oxidase Gene around the Shoot Apex Is Related to Phase Transition in Rice, Plant Physiol., 2001, vol. 125, pp. 1508–1516.PubMedCrossRefGoogle Scholar
  34. 33.
    King, R.W., Junttila, O., Mander, L.M., and Black, E., Gibberellin Structure and Function: Biological Activity and Competitive Inhibition of Gibberellin 2- and 3-Oxidase Enzymes, Physiol. Plant., 2004, vol. 120, pp. 287–297.PubMedCrossRefGoogle Scholar
  35. 34.
    Xiang, H., Takeuchi, H., Tsunoda, Y., Nakajima, M., Murata, K., Ueguchi-Tanaka, M., Kidokoro, S., Kezuka, Y., Nonaka, T., Masuoka, M., and Katoh, E., Thermodynamic Characterization of OsGID1-Gibberellin Binding Using Calorimetry and Docking Simulations, J. Mol. Recognit., 2011, vol. 24, pp. 275–282.PubMedCrossRefGoogle Scholar
  36. 35.
    Foster, K.R., Lee, I.-J., Pharis, R.P., and Morgan, P.W., Effects of Ring D-Modified Gibberellins on Gibberellin Levels and Development in Selected Sorghum bicolour Maturity Genotypes, J. Plant Growth Regul., 1997, vol. 16, pp. 79–87.CrossRefGoogle Scholar
  37. 36.
    Junttila, O., King, R.W., Poole, A., Kretschmer, G., Pharis, R.P., and Evans, L.T., Regulation in Lolium temulentum of the Metabolism of Gibberellin A20 and Gibberellin A1 by 16,17-Dihydro GA5 and by the Growth Retardant, LAB 198 999, Aust. J. Plant Physiol., 1997, vol. 24, pp. 359–369.CrossRefGoogle Scholar
  38. 37.
    Evans, L.T., King, R.W., Mander, L.N., Pharis, R.P., and Duncan, K.A., The Differential Effects of C-16,17-Dihydro Gibberellins and Related Compounds on Stem Elongation and Flowering in Lolium temulentum, Planta, 1994, vol. 193, pp. 107–114.CrossRefGoogle Scholar
  39. 38.
    Kloosterman, B., Navarro, C., Bijsterbosch, G., Lange, T., Prat, S., Visser, R.G.F., and Bachem, C.W.B., StGA2ox1 Is Induced Prior to Swelling and Controls GA Levels during Potato Tuber Development, Plant J., 2007, vol. 52, pp. 362–373.PubMedCrossRefGoogle Scholar
  40. 39.
    Langridge, J., Effect of Daylength and Gibberellic Acid on the Flowering of Arabidopsis, Nature, 1957, vol. 180, pp. 36–37.CrossRefGoogle Scholar
  41. 40.
    Gocal, G.F.W., Sheldon, C., Gubler, F., Moritz, T., Bagnall, D., Song, F.L., Parish, R.W., Dennis, E.S., Weigel, D., and King, R.W., GAMYB-Like Genes and Gibberellin Signaling in Arabidopsis, Plant Physiol., 2001, vol. 127, pp. 1682–1693.PubMedCrossRefGoogle Scholar
  42. 41.
    Wilson, R.N., Heckman, J.W., and Somerville, C.R., Gibberellin Is Required for Flowering in Arabidopsis thaliana under Short Days, Plant Physiol., 1992, vol. 100, pp. 403–408.PubMedCrossRefGoogle Scholar
  43. 42.
    Xu, Y.L., Gage, D.A., and Zeevaart, J.A.D., Gibberellins and Stem Growth in Arabidopsis thaliana. Effects of Photoperiod on the GA4 and GA5 Loci, Plant Physiol., 1997, vol. 114, pp. 1471–1461.PubMedCrossRefGoogle Scholar
  44. 43.
    Eriksson, S., Bohlenius, H., Moritz, T., and Nilsson, O., GA4 Is the Active Gibberellin in the Regulation of LEAFY Transcription and Arabidopsis Floral Initiation, Plant Cell, 2006, vol. 18, pp. 2172–2181.PubMedCrossRefGoogle Scholar
  45. 44.
    King, R.W. and Bagnall, D.J., Photoreceptors and the Photoperiodic Response Controlling Flowering of Arabidopsis, Seminars Dev. Biol., 1996, vol. 7, pp. 449–454.CrossRefGoogle Scholar
  46. 45.
    Blázquez, M.A., Green, R., Nilsson, O., Sussman, M.R., and Weigel, D., Gibberellins Promote Flowering of Arabidopsis by Activating the LEAFY Promoter, Plant Cell, 1998, vol. 10, pp. 791–800.PubMedGoogle Scholar
  47. 46.
    Gocal, G.F.W., King, R.W., Blundell, C., Schwartz, O.M., and Weigel, D., Evolution of Floral Meristem Identity Genes: Analysis of Lolium Genes Related to APETALA1 and LEAFY of Arabidopsis, Plant Physiol., 2001, vol. 125, pp. 1788–1801.PubMedCrossRefGoogle Scholar
  48. 47.
    Rieu, I., Ruis-Rivero, O., Fernandez-Garcia, S.J., Gong, F., Griffiths, J., Woolley, L., Benlloch, R., Nilsson, O., Thomas, S.G., Hedden, P., and Phillips, A.L., The Gibberellin Biosynthetic Genes AtGA20ox1 and AtGA20ox2 Act Partially Redundantly, to Promote Growth and Development throughout the Arabidopsis Life Cycle, Plant J., 2008, vol. 53, pp. 488–504.PubMedCrossRefGoogle Scholar
  49. 48.
    Mutasa-Göttgens, E. and Hedden, P., Gibberellin as a Factor in Floral Regulatory Networks, J. Exp. Bot., 2009, vol. 60, pp. 1779–1789.CrossRefGoogle Scholar
  50. 49.
    Bagnall, D.J., Control of Flowering in Arabidopsis thaliana by Light, Vernalisation and Gibberellins, Aust. J. Plant Physiol., 1992, vol. 19, pp. 401–409.CrossRefGoogle Scholar
  51. 50.
    Jasinski, S., Piazza, P., Craft, J., Hay, A., Woolley, L., Rieu, L., Phillips, A., Hedden, P., and Tsiantis, M., Knox Action in Arabidopsis Is Mediated by Coordinate Regulation of Cytokinin and Gibberellin Activities, Curr. Biol., 2005, vol. 15, pp. 1560–1565.PubMedCrossRefGoogle Scholar
  52. 51.
    Itoh, H., Tanaka-Ueguchi, M., Kawaide, H., Chen, X., Kamiya, Y., and Matsuoka, M., The Gene Encoding Tobacco Gibberellin 3β-Hydroxylase Is Expressed at the Site of GA Action during Stem Elongation and Flower Organ Development, Plant J., 2001, vol. 20, pp. 15–24.CrossRefGoogle Scholar
  53. 52.
    Sachs, R.M., Stem Elongation, Annu. Rev. Plant Physiol., 1965, vol. 16, pp. 73–96.CrossRefGoogle Scholar
  54. 53.
    Besnard-Wibaut, C., Effectiveness of Gibberellins and 6-Benzyladenine on Flowering of Arabidopsis thaliana, Physiol. Plant., 1981, vol. 53, pp. 205–212.CrossRefGoogle Scholar
  55. 54.
    Talon, M., Tadeo, F.R., and Zeevaart, J.A.D., Cellular Changes Induced by Exogenous and Endogenous Gibberellins in Shoot Tips of the Long-Day Plant Silene armeria, Planta, 1991, vol. 185, pp. 487–493.CrossRefGoogle Scholar
  56. 55.
    Talon, M. and Zeevaart, J.A.D., Stem Elongation and Changes in the Levels of Gibberellins in Shoot Tips Induced by Differential Photoperiodic Treatments in Silene armeria, Planta, 1992, vol. 188, pp. 457–461.CrossRefGoogle Scholar
  57. 56.
    Kojima, S., Takahashi, Y., Kobayashi, Y., Monna, L., Sasaki, T., Araki, T., and Yano, M., Hd3a, a Rice Ortholog of the Arabidopsis FT Gene, Promotes Transition to Flowering Downstream of Hd1 under Short-Day Conditions, Plant Cell Physiol., 2002, vol. 43, pp. 1096–1105.PubMedCrossRefGoogle Scholar
  58. 57.
    Hayama, R., Agashe, B., Luley, E., King, R., and Coupland, G., A Circadian Rhythm Set by Dusk Controls the Expression of FT Homologues and Short Day Photoperiodic Flowering Response in Pharbitis nill, Plant Cell, 2007, vol. 19, pp. 2988–3000.PubMedCrossRefGoogle Scholar
  59. 58.
    Izawa, T., Oikawa, T., Sugiyama, N., Tanisaka, T., Yano, M., and Shimamoto, K., Phytochrome Mediates the External Light Signal to Repress FT Orthologs in Photoperiodic Flowering of Rice, Gen. Dev., 2002, vol. 16, pp. 2006–2020.CrossRefGoogle Scholar
  60. 59.
    Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J., and Weigel, D., Activation Tagging of the Floral Inducer FT, Science, 1999, vol. 286, pp. 1962–1965.PubMedCrossRefGoogle Scholar
  61. 60.
    Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., and Araki, T., A Pair of Related Genes with Antagonistic Roles in Mediating Flowering Signals, Science, 1999, vol. 286, pp. 1960–1962.PubMedCrossRefGoogle Scholar
  62. 61.
    Skøt, L., Sanderson, R., Thomas, A., Skøt, K., Thorogood, D., Latypova, G., Asp, T., and Armstead, I., Allelic Variation in the Perennial Ryegrass FLOWERING LOCUS T Gene Is Associated with Changes in Flowering Time across a Range of Populations, Plant Physiol., 2011, vol. 155, pp. 1013–1022.PubMedCrossRefGoogle Scholar
  63. 62.
    Zeevaart, J.A.D. and Talon, M., Gibberellins and Mutants in Arabidopsis thaliana, Plant Growth Regulation, Karstens, C.M., Loon, L.C., and Vreugdenhil, D, Eds., Amsterdam: Kluwer, 1992, pp. 34–42.Google Scholar
  64. 63.
    Yamaguchi, A., Kobayashi, Y., Goto, K., Abe, M., and Araki, T., TWIN SISTER OF FT (TSF) Acts as a Floral Pathway Integrator Redundantly with FT, Plant Cell Physiol., 2005, vol. 46, pp. 1175–1189.PubMedCrossRefGoogle Scholar
  65. 64.
    Yoo, S.K., Chung, K.S., Kim, J., Lee, J.H., Hong, S.M., Yoo, S.J., Yoo, S.Y., Lee, J.S., and Ahn, J.H., CONSTANS Activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to Promote Flowering in Arabidopsis, Plant Physiol., 2005, vol. 139, pp. 770–778.PubMedCrossRefGoogle Scholar
  66. 65.
    Roldan, M., Gomez-Mena, C., Ruiz-Garcia, L., Salinas, J., and Martinez-Zapater, J.M., Sucrose Availability on the Aerial Part of the Plant Promotes Morphogenesis and Flowering of Arabidopsis in the Dark, Plant J., 1999, vol. 20, pp. 581–590.PubMedCrossRefGoogle Scholar
  67. 66.
    Griffiths, J., Hughes, T., Rieu, I., Zentella, R., Zhang, Z.I., Powers, S.J., Gong, P., Phillips, A.L., Hedden, P., Sun, T.P., and Thomas, S.G., Genetic Characterization and Functional Analysis of the GID1 Gibberellin Receptors in Arabidopsis, Plant Cell, 2006, vol. 18, pp. 3399–3414.PubMedCrossRefGoogle Scholar
  68. 67.
    Arana, M.V., la Rosa, N.M.-D., Maloof, J.N., Blázquez, M.A., and Alabadi, D., Circadian Oscillation of Gibberellin Signaling in Arabidopsis, Proc. Natl. Acad. Sci. USA, 2011, vol. 108, pp. 9292–9297.PubMedCrossRefGoogle Scholar
  69. 68.
    King, R.W., Multiple Circadian Rhythms Control Flowering Responses in Chenopodium rubrum, Can. J. Bot., 1975, vol. 53, pp. 2631–2638.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.CSIRO Plant IndustryCanberra CityAustralia

Personalised recommendations