Advertisement

Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses

  • 1282 Accesses

  • 104 Citations

Abstract

In the studies of lipid metabolism of unicellular photoautotrophic eukaryotes (microalgae), the main attention is commonly paid to polar membrane lipids and their fatty acid (FA) composition, whereas neutral lipids, represented predominantly by triacylglycerols (TAG), are insufficiently studied. As was reported recently, the role of these compounds in microalgae is not limited to their storage function. It was found that TAG are frequently involved in adaptation to environmental conditions. This review summarizes experimental data obtained so far allowing to distinguish at least three aspects of TAG adaptive function in microalgae. First, these compounds are the source of long-chain FA, the building blocks for membranes necessary for rearrangements of the photosynthetic apparatus. Second, TAG biosynthesis consumes excessive photoassimilates preventing photooxidative injuries under stresses which reduce cell capacity of photosynthesis product utilization. Third, TAG deposited as cytoplasmic oil bodies form a depot for secondary carotenoids in carotenogenic microalgae producing an optical screen protecting the cell against photodamage by excessive PAR.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Abbreviations

Car:

carotenoids

DAG:

diacylglycerols

MGDG:

monogalactosyldiacylglycerols

OB:

oil bodies

PUFA:

polyunsaturated fatty acids

TAG:

triacylglycerols

18:6:

dihomo-γ-linolenic acid

20:4:

arachidonic acid

20:5:

eicosapentaenoic acid

22:6:

docosahexaenoic acid

References

  1. 1.

    Gurr, M.I., Harwood, J.L., and Frayn, K.N., Lipid Biochemistry, Oxford: Blackwell Sci, 2002.

  2. 2.

    Harwood, J.L. and Jones, A.L., Lipid Metabolism in Algae, Adv. Bot. Res., 1989, vol. 16, pp. 1–53.

  3. 3.

    Guschina, I.A. and Harwood, J.L., Algal Lipids and Effect of the Environment on Their Biochemistry, Lipids in Aquatic Ecosystems, Kainz, M. Brett, M., and Arts, M., Eds., New York: Springer-Verlag, 2009, pp. 1–24.

  4. 4.

    Muradyan, E.A., Klyachko-Gurvich, G.L., Tsoglin, L.N., Sergeenko, T.V., and Pronina, N.A., Changes in Lipid Metabolism during Adaptation of the Dunaliella salina Photosynthetic Apparatus to High CO2 Concentration, Russ. J. Plant Physiol., 2004, vol. 51, pp. 53–62.

  5. 5.

    Maslova, I.P., Muradyan, E.A., Lapina, S.S., Klyachko-Gurvich, G.L., and Los, D.A., Lipid Fatty Acid Composition and Thermophilicity of Cyanobacteria, Russ. J. Plant Physiol., 2004, vol. 51, pp. 353–360.

  6. 6.

    Merzlyak, M., Chivkunova, O., Gorelova, O., Reshetnikova, I., Solovchenko, A., Khozin-Goldberg, I., and Cohen, Z., Effect of Nitrogen Starvation on Optical Properties, Pigments, and Arachidonic Acid Content of the Unicellular Green Alga Parietochloris incisa (Trebouxiophyceae, Chlorophyta), J. Phycol., 2007, vol. 43, pp. 833–843.

  7. 7.

    Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., and Darzins, A., Microalgal Triacylglycerols as Feedstocks for Biofuel Production: Perspectives and Advances, Plant J., 2008, vol. 54, pp. 621–639.

  8. 8.

    Cardozo, K.H.M., Guaratini, T., Barros, M.P., Falcao, V.R., Tonon, A.P., Lopes, N.P., Campos, S., Torres, M.A., Souza, A.O., Colepicolo, P., and Pinto, E., Metabolites from Algae with Economical Impact, Comp. Biochem. Physiol., C: Toxicol. Pharmacol., 2007, vol. 146, pp. 60–78.

  9. 9.

    Brett, M. and Müller, N.D., The Role of Highly Unsaturated Fatty Acids in Aquatic Foodweb Processes, Freshwater Biol., 1997, vol. 38, pp. 483–499.

  10. 10.

    Hansen, J., Schade, D., Harris, C., Merkel, K., Adamkin, D., Hall, R., Lim, M., Moya, F., Stevens, D., and Twist, P., Docosahexaenoic Acid Plus Arachidonic Acid Enhance Preterm Infant Growth, Prostaglandins Leukot. Essent. Fatty Acids, 1997, vol. 57, p. 196.

  11. 11.

    Fan, Y. and Chapkin, R., Importance of Dietary γ-Linolenic Acid in Human Health and Nutrition, J. Nutr., 1998, vol. 128, pp. 1411–1414.

  12. 12.

    Mutanda, T., Ramesh, D., Karthikeyan, S., Kumari, S., Anandraj, A., and Bux, F., Bioprospecting for Hyper-Lipid Producing Microalgal Strains for Sustainable Biofuel Production, Bioresour. Technol., 2011, vol. 102, pp. 57–70.

  13. 13.

    Lü, J., Sheahan, C., and Fu, P., Metabolic Engineering of Algae for Fourth Generation Biofuels Production, Energy Environ. Sci., 2011, doi 10.1039/c0ee00593b

  14. 14.

    Brown, L.M. and Zeiler, K.G., Aquatic Biomass and Carbon Dioxide Trapping, Energy Conversion Manag., 1993, vol. 34, pp. 1005–1013.

  15. 15.

    Pittman, J.K., Dean, A.P., and Osundeko, O., The Potential of Sustainable Algal Biofuel Production Using Wastewater Resources, Bioresour. Technol., 2011, vol. 102, pp. 17–25.

  16. 16.

    Park, J.B.K., Craggs, R.J., and Shilton, A.N., Waste-water Treatment High Rate Algal Ponds for Biofuel Production, Bioresour. Technol., 2011, vol. 102, pp. 35–42.

  17. 17.

    Singh, A., Nigam, P.S., and Murphy, J.D., Mechanism and Challenges in Commercialisation of Algal Biofuels, Bioresour. Technol., 2011, vol. 102, pp. 26–34.

  18. 18.

    Thompson, G., Lipids and Membrane Function in Green Algae, Biochim. Biophys. Acta, 1996, vol. 1302, pp. 17–45.

  19. 19.

    Makewicz, A., Gribi, C., and Eichenberger, W., Lipids of Ectocarpus fasciculatus (Phaeophyceae). Incorporation of [1-14C] Oleate and the Role of TAG and MGDG in Lipid Metabolism, Plant Cell Physiol., 1997, vol. 38, pp. 952–960.

  20. 20.

    Cohen, Z. and Khozin-Goldberg, I., Searching for PUFA-Rich Microalgae, Single Cell Oils, Cohen, Z. and Ratledge, C., Eds., Am. Oil Chem. Soc.: Champaign IL, 2011, pp. 201–224.

  21. 21.

    Roessler, P.G., Environmental Control of Glycerolipid Metabolism in Microalgae: Commercial Implications and Future Research Directions, J. Phycol., 1990, vol. 26, pp. 393–399.

  22. 22.

    Cohen, Z., Production of Polyunsaturated Fatty Acids by the Microalgae Porphyridium cruentum, Production of Chemicals by Microalgae, Cohen, Z, Ed., London: Taylor and Francis, 1999, pp. 1–24.

  23. 23.

    Cohen, Z., Vonshak, A., and Richmond, A., Effect of Environmental Conditions on Fatty Acid Composition of the Red Alga Porphyridium cruentum: Correlation to Growth Rate, J. Phycol., 1988, vol. 24, pp. 328–332.

  24. 24.

    Bigogno, C., Khozin-Goldberg, I., Boussiba, S., Vonshak, A., and Cohen, Z., Lipid and Fatty Acid Composition of the Green Oleaginous Alga Parietochloris incisa, the Richest Plant Source of Arachidonic Acid, Phytochemistry, 2002, vol. 60, pp. 497–503.

  25. 25.

    Costa, J.A.V. and de Morais, M.G., The Role of Biochemical Engineering in the Production of Biofuels from Microalgae, Bioresour. Technol., 2011, vol. 102, pp. 2–9.

  26. 26.

    Bigogno, C., Khozin-Goldberg, I., and Cohen, Z., Accumulation of Arachidonic Acid-Rich Triacylglycerols in the Microalga Parietochloris incisa (Trebuxiophyceae, Chlorophyta), Phytochemistry, 2002, vol. 60, pp. 135–143.

  27. 27.

    Leman, J., Oleaginous Microorganisms: An Assessment of the Potential, Adv. Appl. Microbiol., 1997, vol. 43, pp. 195–244.

  28. 28.

    Mayzaud, P., Chanut, J., and Ackman, R., Seasonal Changes of the Biochemical Composition of Marine Particulate Matter with Special Reference to Fatty Acids and Sterols, Mar. Ecol. Progr. Ser., 1989, vol. 56, pp. 189–204.

  29. 29.

    Lemoine, Y. and Schoefs, B., Secondary Ketocarotenoid Astaxanthin Biosynthesis in Algae: A Multifunctional Response to Stress, Photosynth. Res., 2010, vol. 106, pp. 155–177.

  30. 30.

    Ye, Z.-W., Jiang, J.-G., and Wu, G.-H., Biosynthesis and Regulation of Carotenoids in Dunaliella: Progresses and Prospects, Biotechnol. Adv., 2009, vol. 26, pp. 352–360.

  31. 31.

    Khozin-Goldberg, I., Adlerstein, D., Bigongo, C., Heimer, Y.M., and Cohen, Z., Elucidation of the Biosynthesis of Eicosapentaenoic Acid in the Microalga Porphyridium cruentum. II. Studies with Radiolabeled Precursors, Plant Physiol., 1997, vol. 114, pp. 223–230.

  32. 32.

    Khozin-Goldberg, I., Yu, H.Z., Adlerstein, D., Didi-Cohen, S., Heimer, Y.M., and Cohen, Z., Triacylglycerols of the Red Microalga Porphyridium cruentum Can Contribute to the Biosynthesis of Eukaryotic Galactolipids, Lipids, 2000, vol. 35, pp. 881–889.

  33. 33.

    Guschina, I. and Harwood, J., Lipids and Lipid Metabolism in Eukaryotic Algae, Prog. Lipid Res., 2006, vol. 45, pp. 160–186.

  34. 34.

    Morgan-Kiss, R., Priscu, J., Pocock, T., Gudynaite-Savitch, L., and Huner, N., Adaptation and Acclimation of Photosynthetic Microorganisms to Permanently Cold Environments, Microbiol. Mol. Biol. Rev., 2006, vol. 70, pp. 222–252.

  35. 35.

    Harwood, J., Involvement of Chloroplast Lipids in the Reaction of Plants Submitted to Stress, Lipids in Photosynthesis: Structure, Function and Genetics, Sigenthaller P.-A., and Murata, N., Eds., Berlin: Springer-Verlag, 2004, pp. 287–302.

  36. 36.

    Merzlyak, M.N., Activated Oxygen and Oxidative Processes in Plant Cell Membranes, Itogi Nauk. Tekhn., Ser. Fiziol. Rast., 1989, vol. 6.

  37. 37.

    Berner, T., Dubinsky, Z., Wyman, K., and Falkowski, P., Photoadaptation and the “Package” Effect in Dunaliella tertiolecta (Chlorophyceae), J. Phycol., 1989, vol. 25, pp. 70–78.

  38. 38.

    Sukenik, A., Carmeli, Y., and Berner, T., Regulation of Fatty Acid Composition by Irradiance Level in the Eustigmatophyte nannochloropsis sp., J. Phycol., 1989, vol. 25, pp. 686–692.

  39. 39.

    Solovchenko, A., Khozin-Goldberg, I., Didi-Cohen, S., Cohen, Z., and Merzlyak, M., Effects of Light Intensity and Nitrogen Starvation on Growth, Total Fatty Acids and Arachidonic Acid in the Green Microalga Parietochloris incisa, J. Appl. Phycol., 2008, vol. 20, pp. 245–251.

  40. 40.

    McLarnon-Riches, C.J., Rolph, C.E., Greenway, D.L.A., and Robinson, P.K., Effects of Environmental Factors and Metals on Selenastrum capricornutum Lipids, Phytochemistry, 1998, vol. 49, pp. 1241–1247.

  41. 41.

    Czygan, F., Blood-Rain and Blood-Snow: Nitrogen-Deficient Cells of Haematococcus pluvialis and Chlamydomonas nivalis, Arch. Mikrobiol., 1970, vol. 74, pp. 69–76.

  42. 42.

    Bidigare, R., Ondrusek, M., Kennicutt, M., Iturriaga, R., Harvey, H., Hoham, R., and Macko, S., Evidence a Photoprotective for Secondary Carotenoids of Snow Algae, J. Phycol., 1993, vol. 29, pp. 427–434.

  43. 43.

    Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., and Xian, M., Biodiesel Production from Oleaginous Microorganisms, Renew. Energy, 2009, vol. 34, pp. 1–5.

  44. 44.

    Khozin-Goldberg, I. and Cohen, Z., The Effect of Phosphate Starvation on the Lipid and Fatty Acid Composition of the Fresh Water Eustigmatophyte Monodus subterraneus, Phytochemistry, 2006, vol. 67, pp. 696–701.

  45. 45.

    Pick, U., Dunaliella: A Model Extremophilic Alga, Isr. J. Plant Sci., 1998, vol. 46, pp. 131–139.

  46. 46.

    Takagi, M., Effect of Salt Concentration on Intracellular Accumulation of Lipids and Triacylglyceride in Marine Microalgae Dunaliella Cells, J. BioSci. Bioeng., 2006, vol. 101, pp. 223–226.

  47. 47.

    Pal, D., Khozin-Goldberg, I., Cohen, Z., and Boussiba, S., The Effect of Light, Salinity, and Nitrogen Availability on Lipid Production by Nannochloropsis sp., Appl. Microbiol. Biotechnol., 2011, vol. 90, pp. 1429–1441.

  48. 48.

    Guckert, J.B. and Cooksey, K.E., Triglyceride Accumulation and Fatty Acid Profile Changes in Chlorella (Chlorophyta) during High pH Induced Cell Cycle Inhibition1, J. Phycol., 1990, vol. 26, pp. 72–79.

  49. 49.

    Tatsuzawa, H., Takizawa, E., Wada, M., and Yamamoto, Y., Fatty Acid and Lipid Composition of the Acidophilic Green Alga Chlamydomonas sp., J. Phycol., 1996, vol. 32, pp. 598–601.

  50. 50.

    Regnault, A., Chervin, D., Chammai, A., Piton, F., Calvayrac, R., and Mazliak, P., Lipid Composition of Euglena gracilis in Relation to Carbon-Nitrogen Balance, Phytochemistry, 1995, vol. 40, pp. 725–733.

  51. 51.

    Murphy, D.J., The Biogenesis and Functions of Lipid Bodies in Animals, Plants, and Microorganisms, Prog. Lipid Res., 2001, vol. 40, pp. 325–438.

  52. 52.

    Khozin-Goldberg, I., Bigogno, C., Shrestha, P., and Cohen, Z., Nitrogen Starvation Induces the Accumulation of Arachidonic Acid in the Freshwater Green Alga Parietochloris incisa (Trebuxiophyceae), J. Phycol., 2002, vol. 38, pp. 991–994.

  53. 53.

    Khozin-Goldberg, I., Shrestha, P., and Cohen, Z., Mobilization of Arachidonyl Moieties from Triacylglycerols into Chloroplastic Lipids Following Recovery from Nitrogen Starvation of the Microalga Parietochloris incisa, Biochim. Biophys. Acta. Mol. Cell Biol. Lipids, 2005, vol. 1738, pp. 63–71.

  54. 54.

    Whitelam, G. and Codd, G., Damaging Effects of Light on Microorganisms, Microbes in Extreme Environments, Herbert, R. and Codd, G, Eds., London: Academic, 1986, pp. 129–169.

  55. 55.

    Gombos, Z. and Murata, N., Genetic Engineering of the Unsaturation of Membrane Glycerolipid: Effects on the Ability of the Photosynthetic Machinery to Tolerate Temperature Stress, Lipids in Photosynthesis: Structure, Function and Genetics, Sigenthaller P.-A., and Murata, N., Eds., Berlin: Springer-Verlag, 2004, pp. 249–262.

  56. 56.

    Patterson, G.W., Effect of Culture Temperature on Fatty Acid Composition of Chlorella sorokiniana, Lipids, 1970, vol. 5, pp. 597–600.

  57. 57.

    Ensminger, I., Busch, F., and Huner, N., Photostasis and Cold Acclimation: Sensing Low Temperature through Photosynthesis, Physiol. Plant., 2006, vol. 126, pp. 28–44.

  58. 58.

    Ort, D., When There Is Too Much Light, Plant Physiol., 2001, vol. 125, pp. 29–32.

  59. 59.

    Solovchenko, A.E. and Merzlyak, M.N., Screening of Visible and UV Radiation as a Photoprotective Mechanism in Plants, Russ. J. Plant Physiol., 2008, vol. 55, pp. 719–737.

  60. 60.

    Boussiba, S., Carotenogenesis in the Green Alga Haematococcus pluvialis: Cellular Physiology and Stress Response, Physiol. Plant., 2000, vol. 108, pp. 111–117.

  61. 61.

    Rabbani, S., Beyer, P., Lintig, J., Hugueney, P., and Kleinig, H., Induced β-Carotene Synthesis Driven by Triacylglycerol Deposition in the Unicellular Alga Dunaliella bardawil, Plant Physiol., 1998, vol. 116, pp. 1239–1248.

  62. 62.

    Mendoza, H., Martel, A., Jimenez, del Rio, M., and Garcia R.G. Oleic Acid Is the Main Fatty Acid Related with Carotenogenesis in Dunaliella salina, J. Appl. Phycol., 1999, vol. 11, pp. 15–19.

  63. 63.

    Solovchenko, A.E., Khozina-Goldberg, I., Didi-Koen, Sh., Koen, Ts., and Merzlyak, M.N., Effects of Light and Nitrogen Starvation on the Content and Composition of Carotenoids of the Green Microalga Parietochloris incisa, Russ. J. Plant Physiol., 2008, vol. 55, pp. 455–462.

  64. 64.

    Mukherjee, R., Borah, S., and Goswami, B., Biochemical Characterization of Carotenoids in Two Species of Trentepohlia (Trentepohliales, Chlorophyta), J. Appl. Phycol., 2010, vol. 22, pp. 569–571.

  65. 65.

    Ben-Amotz, A., Katz, A., and Avron, M., Accumulation of β-Carotene in Halotolerant Algae: Purification and Characterization of β-Carotene-Rich Globules from Dunaliella bardawil (Chlorophyceae), J. Phycol., 1982, vol. 18, pp. 529–537.

  66. 66.

    Ben-Amotz, A. and Avron, M., On the Factors Which Determine Massive β-Carotene Accumulation in the Halotolerant Alga Dunaliella bardawil, Plant Physiol., 1983, vol. 72, pp. 593–597.

  67. 67.

    Ben-Amotz, A., Shaish, A., and Avron, M., Mode of Action of the Massively Accumulated β-Carotene of Dunaliella bardawil in Protecting the Alga against Damage by Excess Irradiation, Plant Physiol., 1989, vol. 86, pp. 1286–1291.

  68. 68.

    Zhekisheva, M., Boussiba, S., Khozin-Goldberg, I., Zarka, A., and Cohen, Z., Accumulation of Oleic Acid in Haematococcus pluvialis (Chlorophyceae) under Nitrogen Starvation or High Light Is Correlated with That of Astaxanthin Esters, J. Phycol., 2002, vol. 38, pp. 325–331.

  69. 69.

    Zhekisheva, M., Zarka, A., Khozin-Goldberg, I., Cohen, Z., and Boussiba, S., Inhibition of Astaxanthin Synthesis under High Irradiance Does Not Abolish Triacylglycerol Accumulation in the Green Alga Haematococcus pluvialis (Chlorophyceae), J. Phycol., 2005, vol. 41, pp. 819–826.

  70. 70.

    Solovchenko, A., Merzlyak, M., Khozin-Goldberg, I., Cohen, Z., and Boussiba, S., Coordinated Carotenoid and Lipid Syntheses Induced in Parietochloris incisa (Chlorophyta, Trebouxiophyceae) Mutant Deficient in Δ5 Desaturase by Nitrogen Starvation and High Light, J. Phycol., 2010, vol. 46, pp. 763–772.

  71. 71.

    Solovchenko, A., Khozin-Goldberg, I., Recht, L., and Boussiba, S., Stress-Induced Changes in Optical Properties, Pigment and Fatty Acid Content of Nannochloropsis sp.: Implications for Non-Destructive Assay of Total Fatty Acids, Mar. Biotechnol., 2010, doi: 10.1007/s10126-010-9323-x

  72. 72.

    Borowitzka, M. and Siva, C., The Taxonomy of the Genus Dunaliella (Chlorophyta, Dunaliellales) with Emphasis on the Marine and Halophilic Species, J. Appl. Phycol., 2007, vol. 19, pp. 567–590.

  73. 73.

    Steinbrenner, J. and Linden, H., Light Induction of Carotenoid Biosynthesis Genes in the Green Alga Haematococcus pluvialis: Regulation by Photosynthetic Redox Control, Plant Mol. Biol., 2003, vol. 52, pp. 343–356.

  74. 74.

    Solovchenko, A., Khozin-Goldberg, I., Cohen, Z., and Merzlyak, M., Carotenoid-to-Chlorophyll Ratio as a Proxy for Assay of Total Fatty Acids and Arachidonic Acid Content in the Green Microalga Parietochloris incisa, J. Appl. Phycol., 2009, vol. 21, pp. 361–366.

  75. 75.

    Solovchenko, A.E., Chivkunova, O.B., and Maslova, I.P., Pigment Composition, Optical Properties, and Resistance to Photodamage of the Microalga Haematococcus pluvialis Cultivated under High Light, Russ. J. Plant Physiol., 2011, vol. 58, pp. 9–17.

Download references

Author information

Correspondence to A. E. Solovchenko.

Additional information

Original Russian Text © A.E. Solovchenko, 2012, published in Fiziologiya Rastenii, 2012, Vol. 59, No. 2, pp. 192–202.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Solovchenko, A.E. Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses. Russ J Plant Physiol 59, 167–176 (2012) doi:10.1134/S1021443712020161

Download citation

Keywords

  • microalgae (unicellular eukaryotic algae)
  • adaptation
  • carotenoids
  • neutral lipids
  • polyunsaturated fatty acids