Role of chlorophylls and carotenoids in seed tolerance to abiotic stressors

  • G. N. Smolikova
  • N. A. Laman
  • O. V. Boriskevich
Research Papers


It is found that chlorophylls are not fully destructed during seed ripening and can be detected in appreciable quantities in physiologically mature seeds. The elevated content of residual chlorophylls reduces seed tolerance to abiotic stresses. The seed carotenoids were represented mainly by lutein and, in much smaller quantities, by β-carotene. Carotenoids were found to accumulate in seeds during accelerated aging and during seed germination at high temperatures. The ratio of carotenoid to chlorophyll content (Car/Chl) is proposed to be a measure of seed tolerance to stress factors. The seeds with elevated Car/Chl ratio were characterized by higher tolerance to stress treatments. It is supposed that the presence of chlorophylls in seeds enhances oxidative stress induced by abiotic stress factors. Carotenoids are considered as antioxidants protecting the seeds against oxidative stress.


angiosperms seeds chlorophylls carotenoids xanthophylls lutein accelerated aging germination heat stress 



accelerated aging

Car/Chl ratio

the relative content of carotenoids with respect to chlorophyll content


chlorophyll fluorescence intensity




  1. 1.
    McDonald, M.B., Seed Deterioration: Physiology, Repair and Assessment, Seed Sci. Technol., 1999, vol. 27, pp. 177–237.Google Scholar
  2. 2.
    Walters, C., Understanding the Mechanisms and Kinetics of Seed Aging, Seed Sci. Res., 1998, vol. 8, pp. 223–244.CrossRefGoogle Scholar
  3. 3.
    Handbook of Vigor Test Methods, Hampton, J.G. and TeKrony, D.M., Eds., Zurich, Switzerland: ISTA Vigor Test Committee, 1995.Google Scholar
  4. 4.
    Veselova, T.V., Veselovskii, V.A., and Leonova, E.A., What Are the Implications of Changes in the Heterogeneity of a Seed Population upon Accelerated Aging? Russ. J. Plant Physiol., 1999, vol. 46, pp. 409–415.Google Scholar
  5. 5.
    Monteverde, N.A. and Lyubimenko, V.N., Green Pigment in the Inner Seed Coat and Its Relationships to Chlorophyll, Izv. Bot. Sada, 1909, vol. 9, pp. 2–3.Google Scholar
  6. 6.
    Yakovlev, M.S. and Zhukova, G.Ya., Pokrytosemennye rasteniya s zelenym i bestsvetnym zarodyshem (khloroi leikoembriofity) (Angiosperms with Green and Colorless Embryo: Chlorophytes and Leukoembryophytes), Leningrad: Nauka, 1973.Google Scholar
  7. 7.
    Hendry, G.A.F., Oxygen, Free Radical Processes and Seed Longevity, Seed Sci. Res., 1993, vol. 3, pp. 141–153.CrossRefGoogle Scholar
  8. 8.
    Mokronosov, A.T., Gavrilenko, V.F., and Zhigalova, T.V., Fotosintez. Fiziologo-ekologicheskie i biokhimicheskie aspekty (Photosynthesis: Physiological, Ecological, and Biochemical Aspects), Ermakov, I.P., Ed., Moscow: Akademiya, 2006.Google Scholar
  9. 9.
    Polesskaya, O.G., Rastitel’naya kletka i aktivnye formy kisloroda (Plant Cell and Reactive Oxygen Species), Ermakov, I.P., Ed., Moscow: KDU, 2007.Google Scholar
  10. 10.
    Solovchenko, A.E. and Merzlyak, M.N., Screening of Visible and UV Radiation as a Photoprotective Mechanism in Plants, Russ. J. Plant Physiol., 2008, vol. 55, pp. 719–737.CrossRefGoogle Scholar
  11. 11.
    Jalink, H., van der Schoor, R., Frandas, A., van Pijien, J.G., and Bino, R.J., Chlorophyll Fluorescence of Brassica oleracea Seeds as a Non-Destructive Marker for Seed Maturity and Seed Performance, Seed Sci. Res., 1998, vol. 8, pp. 437–443.CrossRefGoogle Scholar
  12. 12.
    Bulda, O.V., Rassadina, V.V., Alekseichuk, H.N., and Laman, N.A., Spectrophotometric Measurement of Carotenes, Xanthophylls, and Chlorophylls in Extracts from Plant Seeds, Russ. J. Plant Physiol., 2008, vol. 55, pp. 544–551.CrossRefGoogle Scholar
  13. 13.
    Saito, G.Y., Chang, Y.C., Walling, L.L., and Thomson, W.W., Chloroplast Development and Nuclear Gene Expression in Cotyledons of Soybean Seedlings, New Phytol., 1990, vol. 114, pp. 547–554.CrossRefGoogle Scholar
  14. 14.
    Johnson-Flanagan, A.M. and Thiagarajan, M.R., Degreening in Canola (Brassica napus cv. Westar) Embryos under Optimum Conditions, J. Plant Physiol., 1990, vol. 136, pp. 180–186.Google Scholar
  15. 15.
    Borisjuk, L., Nguyen, T.H., Neuberger, T., Rutten, T., Tschiersch, H., Claus, B., Feussner, I., Webb, A.G., Jakob, P., Weber, H., Wobus, U., and Rolletschek, H., Gradients of Lipid Storage, Photosynthesis and Plastid Differentiation in Developing Soybean Seeds, New Phytol., 2005, vol. 167, pp. 761–776.PubMedCrossRefGoogle Scholar
  16. 16.
    Ward, K., Scarth, R., Daun, J.K., and Thorsteinson, C.T., Characterization of Chlorophyll Pigments in Ripening Canola Seed (Brassica napus), J. Am. Oil Chem. Soc., 1994, vol. 71, pp. 1327–1331.CrossRefGoogle Scholar
  17. 17.
    Clerkx, E.J.M., Vries, M.H.C., Ruijs, G.J., Groot, S.P.C., and Koornneef, M., Characterization of green seed, an Enhancer of abi3-1 in Arabidopsis That Affects Seed Longevity, Plant Physiol., 2003, vol. 132, pp. 1077–1084.PubMedCrossRefGoogle Scholar
  18. 18.
    Lingred, O., Carotenoid Biosynthesis in Seed of Arabidopsis thaliana: Abst. Doct. (Biol.) Dissertation, Uppsala: Swedish Univ. Agric. Sci., 2003.Google Scholar
  19. 19.
    Gutierrez, L., Wuytswinkel, O.V., Castelain, M., and Bellini, C., Combined Networks Regulating Seed Maturation, Trends Plant Sci., 2007, vol. 12, pp. 294–300.PubMedCrossRefGoogle Scholar
  20. 20.
    Dall’Osto, L., Lico, C., Alric, J., Giuliano, G., Havaux, M., and Bassi, R., Lutein Is Needed for Efficient Chlorophyll Triplet Quenching in the Major LHCII Antenna Complex of Higher Plants and Effective Photoprotection In Vivo under Strong Light, BMC Plant Biol., 2006, vol. 6, p. 32, PubMedCrossRefGoogle Scholar
  21. 21.
    Lindgren, O.L., Stalberg, K.J., and Hoglund, A.S., Seed-Specific Overexpression of an Endogenous Arabidopsis Phytoene Synthase Gene Results in Delayed Germination and Increased Levels of Carotenoids, Chlorophyll, and Abscisic Acid, Plant Physiol., 2003, vol. 132, pp. 779–785.PubMedCrossRefGoogle Scholar
  22. 22.
    Howitt, C.A. and Pogson, B.J., Carotenoids Accumulation and Function in Seeds and Non-Green Tissues, Plant Cell Environ., 2006, vol. 29, pp. 435–445.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • G. N. Smolikova
    • 1
  • N. A. Laman
    • 2
  • O. V. Boriskevich
    • 2
  1. 1.Laboratory of Plant Development, Department of Plant Physiology and BiochemistrySt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Laboratory of Plant Growth and Development, Kuprevich Institute of Experimental BotanyNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations