Advertisement

Transfer of Bt corn byproducts from terrestrial to stream ecosystems

  • A. G. Viktorov
Reviews

Abstract

The review deals with the pathways of Bt corn (Zea mays L.) byproduct entry to the environment. Bt plants are genetically modified plants containing the genes of a gram-positive aerobic spore-forming bacterium Bacillus thuringiensis encoding δ-endotoxins. Special attention was given to decomposition of corn detritus in fresh water and migration of Bt toxins to stream ecosystems. The results of field and laboratory experiments on the effect of Bt corn byproducts on stream detritophages are summarized.

Keywords

Zea mays Bacillus thuringiensis genetically modified plants Bt toxins stream ecosystems stream detritophages 

References

  1. 1.
    James, C., Global Status of Commercialized Biotech/GM Crops: 2009, ISAAA Briefs, no. 41, http://www.isaaa.org/resources/publications/briefs/41/executivesummary/pdf/.
  2. 2.
    Talas-Ogras, T., Risk Assessment Strategies for Transgenic Plants, Acta Physiol. Plant., 2010, http://www.spring-erlink.com/content/4r6084436r344345/fulltext.pdf, online: October 14, 2010.
  3. 3.
    Saxena, D. and Stotzky, G., Bacillus thuringiensis (Bt) Toxin Released from Root Exudates and Biomass of Bt Corn Has No Apparent Effect on Earthworms, Nematodes, Protozoa, Bacteria, and Fungi in Soil, Soil Biol. Biochem., 2001, vol. 33, pp. 1225–1230.CrossRefGoogle Scholar
  4. 4.
    Flores, S., Saxena, D., and Stotzky, G., Transgenic Bt Plants Decompose Less in Soil Than Non-Bt Plants, Soil Biol. Biochem., 2005, vol. 37, pp. 1073–1082.CrossRefGoogle Scholar
  5. 5.
    Viktorov, A.G., Influence of Bt-Plants on Soil Biota and Pleiotropic Effect of δ-Endotoxin-Encoding Genes, Russ. J. Plant Physiol., 2008, vol. 55, pp. 738–747.CrossRefGoogle Scholar
  6. 6.
    Tank, J.L., Rosi-Marshall, E.J., Royer, T.V., Whiles, M.R., Griffiths, N.A., Frauendorf, T.C., and Treering, D.J., Occurrence of Maize Detritus and a Transgenic Insectidical Protein (Cry1Ab) within the Stream Network of an Agricultural Landscape, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, pp. 17 645–17 650.CrossRefGoogle Scholar
  7. 7.
    Saxena, D. and Stotzky, G., Release of Larvicidal Cry Proteins in Root Exudates of Transgenic Bt Plants, ISB News Rep. February, 2005, pp. 1–3.Google Scholar
  8. 8.
    Saxena, D., Flores, S., and Stotzky, G., Bt Toxin Is Released in Root Exudates from 12 Transgenic Corn Hybrids Representing Three Transformation Events, Soil Biol. Biochem., 2002, vol. 34, pp. 133–137.CrossRefGoogle Scholar
  9. 9.
    Baumgarte, S. and Christoph, C.T., Field Studies on the Environmental Fate of the Cry1Ab Bt-Toxin Produced by Transgenic Maize (MON810) and Its Effect on Bacterial Communities in the Maize Rhizosphere, Mol. Ecol., 2005, vol. 14, pp. 2539–2551.PubMedCrossRefGoogle Scholar
  10. 10.
    Westgate, M.E., Lizaso, J., and Batchelor, W., Quantitative Relationship between Pollen-Shed Density and Grain Yield in Maize, Crop Sci., 2003, vol. 43, pp. 934–942.CrossRefGoogle Scholar
  11. 11.
    Mendelson, M., Kough, J., Vaituzis, Z., and Matthews, K., Are Bt Crops Safe? Nat. Biotechnol., 2003, vol. 21, pp. 1003–1009.CrossRefGoogle Scholar
  12. 12.
    Aylor, D., Schultes, N., and Shields, E., An Aerobiological Framework for Assessing Crosspollination in Maize, Agric. For. Meteorol., 2003, vol. 119, pp. 111–129.CrossRefGoogle Scholar
  13. 13.
    Babendreier, D., Kalberer, N.M., Romeis, J., Fluri, P., and Bigler, F., Pollen Consumption in Honey Beelarvae: A Step Forward in the Risk Assessment of Transgenic Plants, Apidologie, 2004, vol. 35, pp. 293–300.CrossRefGoogle Scholar
  14. 14.
    Ma, B.L., Frequency of Pollen Drift in Genetically Engineered Corn, ISB News Rep. February, 2005, pp. 3–6.Google Scholar
  15. 15.
    Tumusiime, E., de Groote, H., Vitale, J., and Adam, B., The Cost of Coexistence between Bt Maize and Open-Pollinated Maize Varieties in Lowland Coastal Kenya, Agric. Biol. Forum, 2010, vol. 13, pp. 208–221.Google Scholar
  16. 16.
    Landesumweltamt Brandenburg. Durchführung eines Pollenmonitorings von Mais im Naturschutzgebiet Ruhlsdorfer Bruch 2007, Fachbeiträge des Landesum-weltamtes, 2008, no. 109, http://www.mluv.brandenburg.de/cms/media.php/2320/fb-109.pdf.
  17. 17.
    Hofmann, F., Epp, R., Kalchschmid, A., Kratz, W., Kruse, L., Kuhn, U., Maisch, B., Müller, E., Ober, S., Radtke, J., Schlechtriemen, U., Schmidt, G., Schröder, W., Ohe, W., Vögel, R., Wedl, N., and Wosniok, W., Monitoring of Bt-Maize Pollen Exposure in the Vicinity of the Nature Reserve Ruhlsdorfer Bruch in Northeast Germany 2007 to 2008, Umweltwiss. Schadst. Forsch., 2010, vol. 22, pp. 229–251.CrossRefGoogle Scholar
  18. 18.
    Rosi-Marshall, E.J., Tank, J.L., Royer, T.V., Whiles, M.R., Evans-White, M., Chambers, C., Griffiths, N.A., Pokelsek, J., and Stephen, M.L., Toxins Transgenic Crop Byproducts May Affect Headwater Stream Ecosystems, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 16 204–16 208.CrossRefGoogle Scholar
  19. 19.
    Zwahlen, C., Hilbeck, A., Gugerli, P., and Nentwig, W., Degradation of the Cry1Ab Protein within Transgenic Bacillus thuringiensis Corn Tissue in the Field, Mol. Ecol., 2003, vol. 12, pp. 765–775.PubMedCrossRefGoogle Scholar
  20. 20.
    Jensen, P.D., Dively, G.P., Swan, C.M., and Lamp, W.O., Exposure and Nontarget Effects of Transgenic Bt Corn Debris in Streams, Environ. Entomol., 2010, vol. 39, pp. 707–714.PubMedCrossRefGoogle Scholar
  21. 21.
    Dalzell, B.J., Filley, T.R., and Harbor, J.M., Flood Pulse Influences on Terrestrial Organic Matter Export from an Agricultural Watershed, J. Geophys. Res., 2005, vol. 110, p. G02011, DOI: 10.1029/2005JG000043.CrossRefGoogle Scholar
  22. 22.
    Griffiths, N.A., Tank, J.L., Royer, T.V., Rosi-Marshall, E.J., Whiles, M.R., Chambers, C.P., Frauendorf, T.C., and Evans-White, M.A., Rapid Decomposition of Maize Detritus in Agricultural Headwater Streams, Ecol. Appl., 2009, vol. 19, pp. 133–142.PubMedCrossRefGoogle Scholar
  23. 23.
    Long, L.S., Caddisflies (Trichoptera), Encyclopedia of Entomology, Capinera, J.L., Ed., Berlin: Springer-Verlag, 2008, pp. 707–708.Google Scholar
  24. 24.
    Wagner, R., The Influence of the Diel Activity Pattern of the Larvae of Sericostoma personatum (Kirby & Spence) (Trichoptera) on Organic Matter Distribution in Stream Sediments: A Laboratory Study, Hydrobiologia, 1991, vol. 224, pp. 65–70.CrossRefGoogle Scholar
  25. 25.
    Swan, C.M., Jensen, P.D., Dively, G.P., and Lamp, W.O., Processing of Transgenic Crop Residues in Stream Ecosystems, J. Appl. Ecol., 2009, vol. 46, pp. 1304–1313.Google Scholar
  26. 26.
    Coviella, C.E., Stipanovic, R.D., and Trumble, J.T., Plant Allocation to Defensive Compounds: Interactions between Elevated CO2 and Nitrogen in Transgenic Cotton Plants, J. Exp. Bot., 2002, vol. 53, pp. 323–331.PubMedCrossRefGoogle Scholar
  27. 27.
    Pettigrew, W.T. and Adamczyk, J.J., Nitrogen Fertility and Planting Date Effects on Lint Yield and Cryl Ac (Bt) Endotoxin Production, Agron. J., 2006, vol. 98, pp. 691–697.CrossRefGoogle Scholar
  28. 28.
    Beachy, R.N., Fedoroff, N.V., Goldberg, R.B., and McHughen, A., The Burden of Proof: A Response to Rosi-Marshall et al., Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 7, p. E9.PubMedCrossRefGoogle Scholar
  29. 29.
    Parrott, W., Study of Bt Impact on Caddisflies Overstates Its Conclusions: Response to Rosi-Marshall et al., Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 7, p. E10.PubMedCrossRefGoogle Scholar
  30. 30.
    Rosi-Marshall, E.J., Jennifer, L.T., Royer, T.V., and Whiles, M.R., Reply to Beachy et al. and Parrott: Study Indicates Bt Corn May Affect Caddisflies PNAS, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 7, p. E11.CrossRefGoogle Scholar
  31. 31.
    Chambers, C.P., Whiles, M.R., Rosi-Marshall, E.J., Tank, J.L., Royer, T.V., Griffiths, N.A., Evans-White, M.A., and Stojak, A.R., Responses of Stream Macroinvertebrates to Bt Maize Leaf Detritus, Ecol. Appl., 2010, vol. 20, pp. 1949–1960.PubMedCrossRefGoogle Scholar
  32. 32.
    Jones, M., Folt, C., and Guarda, S., Characterizing Individual, Population and Community Effects of Sublethal Levels of Aquatic Toxicants: An Experimental Case Study Using D. pulex, stream Biol., 1991, vol. 26, pp. 35–44.Google Scholar
  33. 33.
    Hanazato, T. and Dodson, S.I., Synergistic Effects of Low Oxygen Concentration, Predator Kairomone, and a Pesticide on the Cladoceran Daphnia pulex, Limnol. Oceanogr., 1995, vol. 40, pp. 700–709.CrossRefGoogle Scholar
  34. 34.
    Fairchild, J.F., Little, E.E., and Huckins, J.N., Aquatic Hazard Assessment of the Organophosphate Insecticide Fonofos, Arch. Environ. Contam. Toxicol., 1992, vol. 22, pp. 375–379.PubMedCrossRefGoogle Scholar
  35. 35.
    Havens, K.E., Insecticide (Carbaryl, 1-Napthyl-N- Methylcarbamate) Effects on a stream Plankton Community: Zooplankton Size, Biomass, and Algal Abundance, Water, Air, Soil Pollut., 1994, vol. 84, pp. 1–10.CrossRefGoogle Scholar
  36. 36.
    Organization for Economic Cooperation and Development (OECD), Daphnia sp., Acute Immobilization Test and Reproduction Test, Guidelines for Testing of Chemicals, Test Guideline, no. 202, Paris (France), adopted: April 4, 1984.Google Scholar
  37. 37.
    Bøn, T., Traavik, T., and Primicerio, R., Demographic Responses of Daphnia magna Fed Transgenic Bt-Maize, Ecotoxicology, 2010, vol. 19, pp. 419–430.CrossRefGoogle Scholar
  38. 38.
    Wandeler, H., Bahylova, J., and Nentwig, W., Consumption of Two Bt and Six Non-Bt Corn Varieties by the Woodlouse Porcellio scaber, Basic Appl. Ecol., 2002, vol. 3, pp. 357–365.CrossRefGoogle Scholar
  39. 39.
    Zwahlen, C., Hilbeck, A., Howald, R., and Nentwig, W., Effects of Transgenic Bt Corn Litter on the Earthworm Lumbricus terrestris, Mol. Ecol., 2003, vol. 12, pp. 1077–1086.PubMedCrossRefGoogle Scholar
  40. 40.
    Vercesi, M.L., Krogh, P.H., and Holmstrup, M., Can Bacillus thuringiensis (Bt) Corn Residues and Bt-Corn Plants Affect Life-History Traits in the Earthworm Aporrectodea caliginosa? Appl. Soil Ecol., 2006, vol. 32, pp. 180–187.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia

Personalised recommendations