Russian Journal of Plant Physiology

, Volume 57, Issue 3, pp 316–320

Loosening xyloglucan prevents tensile stress in tree stem bending but accelerates the enzymatic degradation of cellulose

Reviews

Abstract

In response to environmental variation, xyloglucan could fix the microfibrils to the inner surface of the wall to withstand the tensile stress generated within the G-layer. This would explain why the basal regions of stems of transgenic poplars overexpressing xyloglucanase could not bend upward. This finding has ramifications for the production of bioethanol, which requires tree cellulose to be enzymatically hydrolyzed. The level of cellulose degradation with enzymes was markedly increased in the xylem overexpressing xyloglucanase. We propose that xyloglucan serves as a key hemicellulose and a tightening tether of cellulose microfibrils in the secondary walls.

Key words

plant enzymatic degradation of cellulose G-layer tensile stress tension wood fibers xyloglucan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hayashi, T., Ihara, Y., Nakai, T., Takeda, T., and Tominaga, R., Cellulose as a Biological Sink of CO2, Stud. Surface Sci. Catalysis, 1998, vol. 114, pp. 243–248.CrossRefGoogle Scholar
  2. 2.
    O’sullivan, A.C., Cellulose: The Structure Slowly Unravels, Cellulose, 1997, vol. 4, pp. 173–207.CrossRefGoogle Scholar
  3. 3.
    Hackney, J.M., Atalla, R.H., and Vandehart, D.L., Modification of Crystallinity and Crystalline Structure of Acetobacter xylinum Cellulose in the Presence of Water-Soluble β-1,4-Linked Polysaccharides: 13C-NMR Evidence, Int. J. Biol. Macromol., 1994, vol. 16, pp. 215–218.CrossRefPubMedGoogle Scholar
  4. 4.
    Wilson, B.F. and Archer, R.R., Reaction Wood: Induction and Mechanical Action, Annu. Rev. Plant Physiol., 1977, vol. 28, pp. 23–43.CrossRefGoogle Scholar
  5. 5.
    Onaka, F., Reaction Wood, Wood Res., 1949, vol. 1, pp. 1–88.Google Scholar
  6. 6.
    Norberg, P.H. and Meier, H., Physical and Chemical Properties of the Gelatinous Layer in Tension Wood Fibers of Aspen (Populus tremula L.), Holzforschung, 1966, vol. 20, pp. 174–178.CrossRefGoogle Scholar
  7. 7.
    Hayashi, T., Takeda, T., Ogawa, K., and Mitsuishi, Y., Effects of the Degree of Polymerization on the Binding of Xyloglucans to Cellulose, Plant Cell Physiol., 1994, vol. 35, pp. 893–899.PubMedGoogle Scholar
  8. 8.
    Park, Y.W., Baba, K., Furuta, Y., Iida, I., Sameshima, K., Arai, M., and Hayashi, T., Enhancement of Growth and Cellulose Accumulation by Over-expression of Xyloglucanase in Poplar, FEBS Lett., 2004, vol. 564, pp. 183–187.CrossRefPubMedGoogle Scholar
  9. 9.
    Baba, K., Park, Y.W., Kaku, T., Kaida, R., Takeuchi, M., Yoshida, M., Hosoo, Y., Ojio, Y., Okuyama, T., Taniguchi, T., Ohmiya, Y., Kondo, T., Shani, Z., Shoseyov, O., Awano, T., Serada, S., Norioka, N., Norioka, S., and Hayashi, T., Xyloglucan for Generating Tensile Stress to Bend Tree Stem, Mol. Plant, 2009, doi:10.1093/mp/ssp054.Google Scholar
  10. 10.
    Kaida, R., Kaku, T., Baba, K., Oyadomari, M., Watanabe, T., Nishida, K., Kanaya, T., Shani, Z., Shoseyov, O., and Hayashi, T., Loosening Xyloglucan Accelerates the Enzymatic Degradation of Cellulose in Wood, Mol. Plant, 2009, doi:10.1093/mp/ssp060.Google Scholar
  11. 11.
    Yoshida, M., Ikawa, M., Kaneda, K., and Okuyama, T., Stem Tangential Strain on the Tension Wood Side of Fagus crenata Saplings, J. Wood Sci., 2003, vol. 49, pp. 475–478.Google Scholar
  12. 12.
    Yoshida, M., Hosoo, Y., and Okuyama, T., Periodicity as a Factor in the Generation of Isotropic Compressive Growth Stress between Microfibrils in Cell Wall Formation during a Twenty-Four Hour Period, Holzforschung, 2000, vol. 54, pp. 469–473.CrossRefGoogle Scholar
  13. 13.
    Hosoo, Y., Yoshida, M., Imai, T., and Okuyama, T., Diurnal Differences in the Innermost Surface of the S2 Layer in Differentiating Tracheids of Cryptomeria japonica Corresponding to a Light-Dark Cycle, Holzforschung, 2003, vol. 57, pp. 567–573.CrossRefGoogle Scholar
  14. 14.
    Hartati, S., Sudarmonowati, E., Park, Y.W., Kaku, T., Kaida, R., Baba, K., and Hayashi, T., Overexpression of Poplar Cellulase Accelerates Growth and Disturbs the Closing Movements of Leaves in Sengon, Plant Physiol., 2008, vol. 147, pp. 552–561.CrossRefPubMedGoogle Scholar
  15. 15.
    Nishikubo, N., Awano, T., Banasiak, A., Bourquin, V., Ibatullin, F., Funada, R., Brumer, H., Teeri, T.T., Hayashi, T., Sundberg, B., and Mellerowicz, E.J., Xyloglucan Endo-Transglycosylase (XET) Functions in Gelatinous Layers of Tension Wood Fibers in Poplar — A Glimpse into the Mechanism of the Balancing Act of Trees, Plant Cell Physiol., 2007, vol. 48, pp. 843–855.CrossRefPubMedGoogle Scholar
  16. 16.
    Hayashi, T., Kaida, R., Mitsuda, N., Ohme-Takagi, M., Nishikuba, N., Kidou, S., and Yoshida, K., Enhancing Primary Raw Materials for Biofuels in Biomass to Biofuels, Chichester, UK: John Wiley & Sons, 2009.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.RISHKyoto UniversityGokasho, Uji, KyotoJapan

Personalised recommendations