Russian Journal of Plant Physiology

, Volume 57, Issue 1, pp 52–61 | Cite as

Effect of weak constant magnetic field on the composition and content of lipids in radish seedlings at various temperatures

  • G. V. NovitskayaEmail author
  • D. R. Molokanov
  • T. K. Kocheshkova
  • Yu. I. Novitskii
Research Papers


We studied the effects of weak permanent homogenous hirizontal magnetic field (PMF) (400 A/m) on the composition and content of lipids and composition of their fatty acids (FAs) in radish (Raphanus sativus L. var. radicula D.C., cv. Rosovo-krashyi s belym konchikom) seedlings at temperatures of 20 and 10°C. We compared lipid composition and content in seedlings at the phase of developed cotyledons (20°C, 5-day-old, and 10°C, 8-day-old seedlings) under low light and in darkness with the lipid composition and content in dry seeds. The seedlings grown in geomagnetic field (GMF) served as a control. In dry seeds, about 99% of total lipids comprised neutral lipids (NL) and only 1% were polar lipids (PL). Triacylglycerols predominated among NL comprising 93% of total seed lipids. During seed germination, NLs were consumed and PL were produced: the amount of glycolipids increased in control by 3.5–5 times and the amount of phospholipis, by 1.5–2 times.In the light at 20°C, PMF suppressed the formation of PL (by 18%), whereas in darkness, it stimulated it approximately by 80% as compared with control. In the light at 10°C, PMF slightly stimulated PL formation; in darkness, it did not almost affect their synthesis. In all treatments, PMF increased the ratio of phospholipids to sterols by 30–100%. Among FA, PMF exerted the strongest effect on the content of erucic acid: it increased in the light and in darkness at 20°C approximately by 25% and decreased at 10°C in the light by 13%. PMF behaved as a correction factor affecting lipid metabolism on the background of light and temperature action.

Key words

Raphanus sativus seedlings weak permatent horizontal magnetic field low temperature light/darkness polar lipids neutral lipids fatty acids 





geomagnetic field






electromagnetic field


free sterols


magnetic fields


neutral lipids


phosphatidic acid








polar lipids


permanent magnetic field


peroxidation of lipids








saturated FAs






sterol esters




unsaturated FAs


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Monin, A.S., Istoriya Zemli (Earth History), Leningrad: Nauka, 1977.Google Scholar
  2. 2.
    Bochkarev, N.G., Magnitnye polya v kosmose (Magnetic Fields in Cosmos), Moscow: Nauka, Glavnaya redaktsiya fiziko-matematicheskoi literatury, 1985.Google Scholar
  3. 3.
    Sytnik, K.M., Kordyum, E.L., Nedukha, E.M., Sidorenko, P.G., and Fomicheva, V.M., Rastitel’naya kletka pri izmenenii geofizicheskikh faktorov (Plant Cell under the Changes in Geophysical Factors), Kiev: Naukova Dumka, 1984.Google Scholar
  4. 4.
    Galland, P. and Pazur, A., Magnetoperception in Plants, J. Plant Res., 2005, vol. 118, pp. 371–389.CrossRefPubMedGoogle Scholar
  5. 5.
    Novitskaya, G.V., Kocheshkova, T.K., and Novitskii, Yu.I., The Effects of a Weak Permanent Magnetic Field on the Lipid Composition and Content in the Onion Leaves of Various Ages, Russ. J. Plant Physiol., 2006, vol. 53, pp. 638–648.CrossRefGoogle Scholar
  6. 6.
    Novitskaya, G.V., Kocheshkova, T.K., and Novitskii, Yu.I., The Effects of a Permanent Magnetic Field on the Lipid Composition and Content and Some Physiological and Biochemical Readings in Plants, Organizatsiya i regulyatsiya fiziologo-biokhimicheskikh protsessov (Organization and Regulation of Physiological and Biochemical Processes), Eprintsev, A.T., Ed., Voronezh: Tsentral’no-chernozemnoe knizhnoe izdatel’stvo, 2003, no. 5, pp. 107–116.Google Scholar
  7. 7.
    Novitskii, Yu.I., Novitskaya, G.V., and Sokolova, I.A., Content of Lipids in the Leaves of Radish Plants of Different Magnetic Orientation Growing under Different Light Intensity, Sov. Plant Physiol., 1990, vol. 37, pp. 54–63.Google Scholar
  8. 8.
    Novitskaya, G.V., Feofilaktova, T.V., Kocheshkova, T.K., Yusupova, I.U., and Novitskii, Yu.I., Changes in the Composition and Content of Lipids in the Leaves of Radish Plants of Different Magnetic Orientation Induced by Weak Permanent Magnetic Field, Russ. J. Plant Physiol., 2008, vol. 55, pp. 486–495.CrossRefGoogle Scholar
  9. 9.
    Piruzyan, L.A. and Aristarkhov, V.M., Spin and Magnetic Effects in Biological Systems Are the Privileges of Membrane Phospholipids, Dokl. Akad. Nauk, 2004, vol. 401, pp. 560–562.Google Scholar
  10. 10.
    Bewley, J.D. and Black, M., Seeds. Physiology of Development and Germination, New York, London: Plenum Press, 1994.Google Scholar
  11. 11.
    Nikolaeva, M.G., Lyanguzova, I.V., and Pozdova, L.M., Biologiya semyan (Seed Biology), St. Petersburg: Nauch.-issled. Inst. Khimii St.-Petersburg. Gos. Univ., 1999.Google Scholar
  12. 12.
    Novitskii, Yu.I., Parametric and Physiological Aspects of Permanent Magnetic Field Action on Plants, Doctoral (Biol.) Dissertation, Moscow: Timiryazev Inst. Plant Physiol. Acad. Sci. USSR, 1984.Google Scholar
  13. 13.
    Travkin, M.P., Effects of Magnetic Fields on the Natural Populations, Reaktsiya biologicheskikh sistem na magnitnye polya (Responses of Biological Systems to Magnetic Fields), Moscow: Nauka, 1978, pp. 178–198.Google Scholar
  14. 14.
    Kreps, E.M., Lipidy kletochnykh membran (The Lipids of the Cell Membranes), Leningrad: Nauka, 1981.Google Scholar
  15. 15.
    Novitskaya, G.V., Sal’nikova, E.B., and Suvorova, T.A., Changes of Fatty Acid Saturation in Winter and Spring Wheat Plants under Hardening, Fiziol. Biokhim. Kul’t. Rast., 1990, vol. 22, pp. 257–264.Google Scholar
  16. 16.
    Trunova, T.I., Rasteniya i nizkotemperaturnyi stress, 44-e Timiryazevskoe chtenie (Plants and Low-Temperature Stress, the 64th Timiryazev Lecture), Moscow: Nauka, 2007.Google Scholar
  17. 17.
    Orlova, I.V., Serebriiskaya, T.S., Popov, V., Merkulova, N., Nosov, A.M., Trunova, T.I., Tsydendambaev, V.D., and Los D.A., Transformation with a Gene for the Thermophylic Acyl-Lipid Desaturase Enhances the Chilling Tolerance of Plants, Plant Cell Physiol., 2003, vol. 44, pp. 447–450.CrossRefPubMedGoogle Scholar
  18. 18.
    Smirnova, V.S. and Goran’ko, I.B., Cold Tolerance of Cultivated Tomato Plants, Byull. Vses. Nauchno-Issled. Inst. Rastenievod. im. N.I. Vavilova, 1992, no. 228, pp. 42–48.Google Scholar
  19. 19.
    Novitskaya, G.V., Suvorova, T.A., and Trunova, T.I., Lipid Composition of Tomato Leaves as Related to Plant Cold Tolerance, Russ. J. Plant Physiol., 2000, vol. 47, pp. 728–733.CrossRefGoogle Scholar
  20. 20.
    Novitskaya, G.V. and Trunova, T.I., Cold Tolerance of Plants Is Related to Lipid Content of Chloroplast Membranes, Dokl. Akad. Nauk, 2000, vol. 371, pp. 258–260.Google Scholar
  21. 21.
    Lyons, S.M., Chilling Injury in Plants, Annu. Rev. Plant Physiol., 1973, vol. 24, pp. 445–466.CrossRefGoogle Scholar
  22. 22.
    Klimov, S.V., Pathways of Plant Adaptation to Low Temperatures, Usp. Sovrem. Biol., 2001, vol. 121, pp. 3–22.Google Scholar
  23. 23.
    Novitskaya, G.V., Molokanov, D.R., Feofilaktova, T.V., Kocheshkova, T.K., and Novitskii, Yu.I., The Effects of a Weak Permanent Magnetic Field on the Sugar Composition and Content in the Radish Seedlings under Different Temperatures, Organizatsiya i regulyatsiya fiziologo-biokhimicheskikh protsessov (Organization and Regulation of Physiological and Biochemical Processes), Eprintsev, A.T., Ed., Voronezh: Tsentral’nochernozemnoe knizhnoe izdatel’stvo, 2005, no. 7, pp. 126–139.Google Scholar
  24. 24.
    Yanovskii, B.M., Zemnoi magnetizm (Earth’s Magnetism), Leningrad: Leningr. Gos. Univ., 1963, part 2.Google Scholar
  25. 25.
    Novitskaya, G.V. and Rutskaya, L.A., Lipid Quantification in Chloroplast Membranes, Sov. Plant Physiol., 1976, vol. 23, pp. 889–905.Google Scholar
  26. 26.
    Novitskaya, G.V., Metodicheskoe rukovodstvo po tonkosloinoi khromatografii fosfolipidov (A Practical Guide on Thin-Layer Chromatography of Phospholipids), Moscow: Nauka, 1972.Google Scholar
  27. 27.
    Gerlach, E. and Deutike, B., Eine einfach Methode zur Microbestimmung von Phosphat in der Papierchromatographie, Biochem. Z., 1963, bd. 337, ss. 477–479.Google Scholar
  28. 28.
    Rougachan, R.J. and Batt, R.D., The Glycerolipid Composition of Leaves, Phytochemistry, 1968, vol. 8, pp. 363–369.CrossRefGoogle Scholar
  29. 29.
    Amenta, J.S., A Rapid Chemical Method for Quantification of Lipids Separated by Thin-Layer Chromatography, J. Lipid Res., 1964, vol. 5, pp. 270–272.PubMedGoogle Scholar
  30. 30.
    Vereshchagin, A.G. and Ganieva, M., Effect of γ-Radiation on Lipid Metabolism in Ripening and Germinating Cotton Seeds, Biokhimiya, 1964, vol. 29, pp. 288–299.Google Scholar
  31. 31.
    Zaitsev, G.N., Matematicheskaya statistika v eksperimental’noi botanike (Mathematic Statistics in Experimental Botany), Moscow: Nauka, 1984.Google Scholar
  32. 32.
    Senanayake, N. and Shahidi, F., Lipid Components of Borago (Borago officinalis L.) Seeds and Their Changes during Germination, J. Am. Oil Chem. Soc., 2000, vol. 77, pp. 55–61.CrossRefGoogle Scholar
  33. 33.
    Vereshchagin, A.G., Sidorova, N.N., Pchelkin, V.P., and Tsydendambaev, V.D., Triacylglycerol and Polar Lipid Metabolism in Germinating Sea Buckthorn Seeds, Russ. J. Plant Physiol., 2009, vol. 56, pp. 50–57.CrossRefGoogle Scholar
  34. 34.
    Danilenko, N.G. and Davydenko, O.G., Miry genomov organell (The Worlds of Organelle Genomes), Minsk: Tekhnalogiya, 2003.Google Scholar
  35. 35.
    Vereshchagin, A.G., Biokhimiya triglitseridov (Biochemistry of Triglycerols), Moscow: Nauka, 1972.Google Scholar
  36. 36.
    Van Deenen, L.L.M., Phospholipide Beziehung zwischen ihren chemischen Structur und Biomembrane, Naturwissenschaften, 1972, vol. 59, pp. 485–491.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • G. V. Novitskaya
    • 1
    Email author
  • D. R. Molokanov
    • 1
  • T. K. Kocheshkova
    • 1
  • Yu. I. Novitskii
    • 1
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations