Abscisic acid in the plants-pathogen interaction

  • I. V. MaksimovEmail author


Information available concerning the role of ABA in the interaction between plants and pathogenic microorganisms allows a conclusion that this phytohormone is required for plant defense. For the development of plant resistance, short-term increases in the ABA level are of importance during the early stages of plant interaction with pathogens, which trigger anti-stress programs in plants, primarily related to the synthesis of callose. At the same time, high ABA concentrations maintained for a long time reduce efficiency of defense systems controlled by salicylic and jasmonic acids and ethylene. ABA was shown to suppress expression of some genes of defense proteins, including those involved in the synthesis and metabolism of phenolic compounds and lignin. ABA is evidently involved in plant defense mechanisms against pathogens as a regulatory element.

Key words

plant abscisic acid resistance pathogens 



Abscisic Acid Insensitive 1


ABA-Responsive Element


β-aminobutyric acid


Botrytis Susceptible 1


Ethylene Insensitive 2


Enhanced Response to ABA3


G-protein-Coupled Receptor


hypersensitive response

MAP kinase

Mitogen-Activated Protein kinase


phenylalanine ammonia-lyase


systemic acquired resistance


systemic induced resistance


Soluble N-ethylmaleimide-sensitive factor Attachment Protein Receptor


Wound Activated Protein Kinase


  1. 1.
    Kulaeva, O.N., The Physiological Role of Abscisic Acid: An Introduction to the Publication of the Proceedings of the International Symposium on Abscisic Acid (Puschino, 1993), Russ. J. Plant Physiol., 1994, vol. 41, pp. 563–564.Google Scholar
  2. 2.
    Assante, G., Merlini, L., and Nasini, G., (-)-Abscisic Acid, a Metabolite of the Fungus Cercospora rosicola, Experientia, 1977, vol. 33, pp. 1556–1557.Google Scholar
  3. 3.
    Schmidt, K., Pflugmacher, M., Klages, S., Maser, A., Mock, A., and Stahl, D.J., Accumulation of the Hormone Abscisic Acid (ABA) at the Infection Site of the Fungus Cercospora beticola Supports the Role of ABA as a Repressor of Plant Defense in Sugar Beet, Mol. Plant Pathol., 2008, vol. 9, DOI: 10.1111/J.1364-3703.2008.00491.X.Google Scholar
  4. 4.
    Volynets, A.P., Karoza, S.E., and Sukhova, L.S., Abscisic Acid as the Possible Defense Factor during Fungal Infection, Dokl. Akad. Nauk, 1993, vol. 329, pp. 380–382.Google Scholar
  5. 5.
    Kettner, J. and Dörfling, K., Abscisic Acid Metabolism in Ceratocystis coerulescens, Physiol. Plant., 2006, vol. 69, pp. 278–282.Google Scholar
  6. 6.
    Michniewicz, M., Czerwinska, E., and Rezej, B., Interaction of Abscisic Acid and Ethylene in Relation to Disease Development in Wheat Seedlings Infected by Fusarium culmorum (W.G.) Sacc., Acta Physiol. Plant., 1990, vol. 12, pp. 41–48.Google Scholar
  7. 7.
    Takajama, T., Yoshida, H., Araki, K., and Nakayama, K., Microbial Production of Abscisic Acid with Cercospora rosicola: 1. Stimulation of ABA Accumulation by Plant Extracts, Biotechnol. Lett., 1983, vol. 5, pp. 55–58.Google Scholar
  8. 8.
    Palmer, C.-L. and Skinner, W., Mycosphaerella graminicola: Latent Infection, Crop Devastation and Genomics, Mol. Plant Pathol., 2002, vol. 3, pp. 63–70.Google Scholar
  9. 9.
    Hurtado, S.P. and Ramstedt, M., Compatible and Incompatible Reactions of Melampsora Rust on Willow Leaves, Scand. J. For. Res., 2000, vol. 15, pp. 405–409.Google Scholar
  10. 10.
    Melloto, M., Underwood, W., Koczan, J., Nomura, K., and He, S.Y., Plant Stomata Function in Innate Immunity against Bacterial Invasion, Cell, 2006, vol. 126, pp. 969–980.Google Scholar
  11. 11.
    Goel, A.K., Lundberg, D., Torres, M.A., Matthews, R., Akimoto-Tomiyama, C., Farmer, L., Dangl, J.L., and Grant, S.R., The Pseudomonas syringae Type III Effector HopAM1 Enhances Virulence on Water-Stressed Plants, Mol. Plant-Microbe Interact., 2008, vol. 21, pp. 361–370.PubMedGoogle Scholar
  12. 12.
    Talieva, M.N., Runkova, L.V., and Andreev, L.N., Effect of Abscisic Acid and Kartolin on Plant Resistance to Powdery Mildew, Izv. Akad. Nauk, Ser. Biol., 1999, vol. 27, pp. 534–538.Google Scholar
  13. 13.
    Maksimov, I.V. and Yarullina, L.G., Changes in Phytohormone Content in Seedlings after Septoria nodorum Infection, Agrokhimiya, 2001, no. 10, pp. 82–88.Google Scholar
  14. 14.
    Talieva, M.N. and Kondrat’eva, V.V., Effect of Exogenous Salicylic Acid on Phytohormone Content in Phlox paniculata and Ph. subulata Leaf Tissues Connected with Resistance to Erysiphe cichoracearum DC. f. phlogis Jacz., Biol. Bull., 2002, vol. 29, pp. 551–554.Google Scholar
  15. 15.
    Zhou, J., Zhang, H., Yang, Y., Zhang, Z., Zhang, H., Hu, X., Chen, J., Wang, X.-C., and Huang, R., Abscisic Acid Regulates TSRF1-Mediated Resistance to Ralstionia solanacearum by Modifying the Expression of GCC Box-Containing Genes in Tobacco, J. Exp. Bot., 2008, vol. 59, pp. 645–652.PubMedGoogle Scholar
  16. 16.
    Kawano, T., Roles of the Reactive Oxygen Species-Generating Peroxidase Reactions in Plant Defense and Growth Induction, Plant Cell Rep., 2003, vol. 21, pp. 829–837.PubMedGoogle Scholar
  17. 17.
    Iriti, M. and Faoro, F., Abscisic Acid Is Involved in Chitosan-Induced Resistance to Tobacco Necrosis Virus (TNV), Plant Physiol. Biochem., 2008, vol. 46, pp. 1106–1111.PubMedGoogle Scholar
  18. 18.
    Shaul, O., Elad, Y., and Zieslin, N., Suppression of Botrytis Blight Disease of Rose Flowers with Gibberellic Acid: Effect of Abscisic Acid and Pactobutrasol, Post Harvest Boil. Technol., 1996, vol. 7, pp. 145–150.Google Scholar
  19. 19.
    Koga, H., Dohi, K., and Mori, M., Abscisic Acid and Low Temperatures Suppress the Whole Plant-Specific Resistance Reaction of Rice Plants to the Infection with Magnaporthe grisea, Physiol. Mol. Plant Pathol., 2004, vol. 65, pp. 3–9.Google Scholar
  20. 20.
    Wasilewska, A., Vlad, F., Sirichandra, C., Redko, Y., Jammes, F., Valon, C., Frey, N.F., and Leung, J., An Update on Abscisic Acid Signaling in Plants and More, Mol. Plant., 2008, vol. 1, pp. 198–217.PubMedGoogle Scholar
  21. 21.
    Yasuda, M., Ishikawa, A., Jikumaru, Y., Seki, M., Umezawa, T., Asami, T., Maryama-Nakashita, A., Kudo, T., Shinozaki, K., Yoshida, S., and Nakashita, H., Antagonistic Interaction between Systemic Acquired Resistance and the Abscisic Acid-Mediated Abiotic Stress Response in Arabidopsis, Plant Cell, 2008, vol. 20, pp. 1678–1692.PubMedGoogle Scholar
  22. 22.
    Mauch-Mani, B. and Mauch, F., The Role of Abscisic Acid in Plant-Pathogen Interaction, Curr. Opin. Plant Biol., 2005, vol. 8, pp. 409–414.PubMedGoogle Scholar
  23. 23.
    Ward, E.W.B., Cahill, D.M., and Bhattacharayya, M.K., Abscisic Acid Suppression of Phenylalanine Ammonia-Lyase Activity and mRNA, and Resistance of Soybeans to Phytophthora megasperma f. sp. glycinea, Plant Physiol., 1989, vol. 91, pp. 23–27.PubMedGoogle Scholar
  24. 24.
    Mohr, P.G. and Cahill, D.M., Suppression by ABA of Salicylic Acid and Lignin Accumulation and the Expression of Multiple Genes, in Arabidopsis Infected with Pseudomonas syringae pv. tomato, Funct. Integr. Genom., 2007, vol. 7, pp. 181–191.Google Scholar
  25. 25.
    Liang, Y. and Harris, J., Response of Root Branching to Abscisic Acid Is Correlated with Nodule Formation Both in Legumes and Nonlegumes, Am. J. Bot., 2005, vol. 92, pp. 1675–1683.Google Scholar
  26. 26.
    Fester, T. and Hause, B., Drought and Symbiosis — Why Is Abscisic Acid Necessary for Arbuscular mycorrhiza? New Phytol., 2007, vol. 175, pp. 383–386.PubMedGoogle Scholar
  27. 27.
    Goritschnig, S., Weihmann, T., Zhang, Y., Fobert, P., McCourt, P., and Li, X., A Novel Role for Protein Farnesylation in Plant Innate Immunity, Plant Physiol., 2008, vol. 148, pp. 348–357.PubMedGoogle Scholar
  28. 28.
    De Torez-Zabala, M., Truman, W., Bennet, M.H., Lafforgue, G., Mansfield, J.W., Egea, P.R., Bogre, L., and Grant, M., Pseudomonas syringae pv. tomato Hijacks the Arabidopsis Abscisic Acid Signaling Pathway to Cause Disease, EMBO J., 2007, vol. 26, pp. 1434–1443.Google Scholar
  29. 29.
    Flors, V., Ton, J., Jakab, G., and Mauch-Mani, B., Abscisic Acid and Callose: Team Players in Defense against Pathogens? J. Phytopathol., 2005, vol. 153, pp. 377–383.Google Scholar
  30. 30.
    Ton, J. and Mauch-Mani, B., β-Aminobutyric Acid-Induced Resistance against Necrotrophic Pathogens Is Based on ABA-Dependent Priming Is Based on ABADependent Priming for Callose, Plant J., 2004, vol. 38, pp. 119–130.PubMedGoogle Scholar
  31. 31.
    Adie, B.A., Perz-Perez, J., Perz-Perez, M.M., Godoy, M., Sanches-Serano, J.J., Schmels, E.A., and Solano, R., ABA Is an Essential Signal for Plant Resistance to Pathogens Affecting JA Biosynthesis and the Activation of Defenses in Arabidopsis, Plant Cell, 2007, vol. 19, pp. 1665–1681.PubMedGoogle Scholar
  32. 32.
    Kaliff, M., Staal, J., Myrenas, M., and Dixelius, C., ABA Is Required for Leptosphaeria masculans Resistance via ABI- and ABI4-Dependent Signaling, Mol. Plant-Microbe Interact., 2007, vol. 20, pp. 335–345.PubMedGoogle Scholar
  33. 33.
    Nishimura, M.T., Stein, M., Hou, B.H., Vogel, J.P., Edwards, H., and Somerville, S.C., Loss of a Callose Synthase Results in Salicylic Acid-Dependent Disease Resistance, Science, 2003, vol. 301, pp. 969–972.PubMedGoogle Scholar
  34. 34.
    Hornberg, C. and Weiler, E.W., High-Affinity Binding Sites for Abscisic Acid on the Plasmalemma of Vicia faba Guard Cells, Nature, 1984, vol. 310, pp. 321–324.Google Scholar
  35. 35.
    Zhang, D.P., Wu, Z.Y., Li, X.Y., and Zhao, Z.X., Purification and Identification of a 42-kDa Abscisic Acid Specific Binding Protein from Epidermis of Broad Bean Leaves, Plant Physiol., 2002, vol. 128, pp. 714–725.PubMedGoogle Scholar
  36. 36.
    Shen, Y.-Y., Wang, X.-F., Wul, F.-Q., Du, S.-Y., Cao, Z., Shang, Y., Wang, X.L., Peng, C.-C., Yu, X.-C., Zhu, S.-Y., Fan, R.-C., Xu, Y.-H., and Zhang, D.-P., The Mg-Chelatase H Subunit Is an Abscisic Acid Receptor, Nature, 2006, vol. 443, pp. 823–826.PubMedGoogle Scholar
  37. 37.
    Razem, F.A., El-Kereamy, A., Abrams, S.R., and Hill, R.D., The RNA-Binding Protein FCA Is an Abscisic Acid Receptor, Nature, 2006, vol. 439, pp. 290–294.PubMedGoogle Scholar
  38. 38.
    Gookin, T.E., Kim, J., and Assmann, S.M., Whole Proteome Identification of Plant Candidate G-Protein Coupled Receptors in Arabidopsis, Rice, and Poplar: Computational Prediction and In Vivo Protein Coupling, Gen. Biol., 2008, vol. 9, p. R120, Scholar
  39. 39.
    Liu, X., Yue, Y., Li, B., Nie, Y., Li, W., Wu, W.-H., and Ma, L., A G-Protein-Coupled Receptor Is a Plasma Membrane Receptor for the Plant Hormone Abscisic Acid, Science, 2007, vol. 315, pp. 1712–1716.PubMedGoogle Scholar
  40. 40.
    Johnston, C.A., Temple, B.R., Chen, J.-G., Gao, Y., Moriyama, E.N., Jones, A.M., Siderovski, D.P., and Willard, F.S., Comment on “A G-Protein-Coupled Receptor Is a Plasma Membrane Receptor for the Plant Hormone Abscisic Acid”, Science, 2007, vol. 318, p. 914.PubMedGoogle Scholar
  41. 41.
    Gao, Y., Zeng, Q., Guo, J., Cheng, J., Ellis, B.E., and Chen, J.-G., Genetic Characterization Reveals No Role for the Reported ABA Receptor, GCR2, in ABA Control of Seed Germination and Early Seedling Development in Arabidopsis, Plant J., 2007, vol. 52, pp. 1001–1013.PubMedGoogle Scholar
  42. 42.
    Sun, D.-Y., Yin, Z.-J., Wu, Sh.-J., Su, J., Shi, Sh., Wu, H., Xiao, F.-H., Qi, J.-L., Liu, Zh., Pang, Y.-J., Shen, H.-G., and Yang, Y.-H., Effects of Abscisic Acid on the Secondary Metabolism of Cultured Onosma paniculatum Cells, Russ. J. Plant Physiol., 2007, vol. 54, pp. 530–535.Google Scholar
  43. 43.
    Klusener, B., Young, J.J., Murata, Y., Allen, G.J., Mori, I.C., Hugovieux, V., and Schroeder, J.I., Convergence of Calcium Signaling Pathways of Pathogenic Elicitors and Abscisic Acid in Arabidopsis Guard Cells, Plant Physiol., 2002, vol. 130, pp. 2152–2163.PubMedGoogle Scholar
  44. 44.
    Lee, J.-S., The Mechanism of Stomatal Closing by Salicylic Acid in Commelina communis L., J. Plant Biol., 1998, vol. 41, pp. 97–102.Google Scholar
  45. 45.
    Mittler, R., Vanderauwera, S., Gollery, M., and van Breusegem, F., Reactive Oxygen Gene Network of Plants, Trends Plant Sci., 2004, vol. 9, pp. 490–498.PubMedGoogle Scholar
  46. 46.
    Neill, S., Interaction between Abscisic Acid, Hydrogen Peroxide and Nitric Oxide Mediate Survival Responses during Water Stress, New Phytol., 2007, vol. 175, pp. 4–6.PubMedGoogle Scholar
  47. 47.
    Zalejski, C., Zhang, Z., Quettier, A.-L., Maldiney, R., Bonnet, M., Braut, M., Demantre, C., Miginiac, E., Rona, J.-P., Sotta, B., and Jeannette, E., Diacylglycerol Pyrophosphate Is a Second Messenger of Abscisic Acid Signaling in Arabidopsis thaliana Suspension Cells, Plant J., 2005, vol. 42, pp. 145–152.PubMedGoogle Scholar
  48. 48.
    Jiang, M. and Zhang, J., Involvement of Plasmamembrane NADPH Oxidase in Abscisic Acid- and Water Stress-Induced Antioxidant Defense in Leaves of Maize Seedlings, Planta, 2002, vol. 215, pp. 1022–1030.PubMedGoogle Scholar
  49. 49.
    Pena-Cortes, H., Prat, S., Atzorn, R., Wasternack, C., and Willmitzer, L., Abscisic Acid-Deficient Plants Do Not Accumulate Proteinase Inhibitors II Following Systemin Treatment, Planta, 1996, vol. 198, pp. 447–451.Google Scholar
  50. 50.
    Fan, Z., Gao, L., and Wang, W., Phosphatidic Acid Stimulates Cardiac KATP Channels Like Phosphatidyl-Inositols, but with Novel Gating Kinetics, Am. J. Physiol. Cell Physiol., 2003, vol. 284, pp. 94–102.Google Scholar
  51. 51.
    Den Hartog, M., Musgrave, A., and Munnik, T., Nod Factor-Induced Phosphaditic Acid and Diacylglycerol Pyrophosphate Formation: A Role for Phospholipase C and D in Root Hair Deformation, Plant J., 2001, vol. 25, pp. 55–60.Google Scholar
  52. 52.
    Van der Luit, A., Piatti, T., van Doorn, A., Musgrave, A., Felix, G., Boller, T., and Munnik, T., Elicitation of Suspension-Cultured Tomato Cells Triggers the Formation of Phosphaditic Acid and Diacylglycerol Pyrophosphate, Plant Physiol., 2000, vol. 123, pp. 1507–1515.PubMedGoogle Scholar
  53. 53.
    Herrera-Medina, M.J., Steinkellner, S., Vierheilig, H., Bote, J.A.O., and Garrido, J.M.G., Abscisic Acid Determines Arbuscule Development and Functionality in the Tomato Arbuscular Mycorrhiza, New Phytol., 2007, vol. 175, pp. 554–564.PubMedGoogle Scholar
  54. 54.
    Audenaert, K., Meyer, G.B.D., and Hofte, M.M., Abscisic Acid Determines Basal Susceptibility of Tomato to Botrytis cinerea and Suppresses Salicylic Acid-Dependent Signaling Mechanisms, Plant Physiol., 2002, vol. 128, pp. 491–501.PubMedGoogle Scholar
  55. 55.
    Rakwal, R., Agrawal, G., and Yonekura, M., Light-Dependent Induction of OsPR-10 in Rice Seedlings by the Global Stress Signaling Molecule Jasmonic Acid and Protein Phosphatase 2A Inhibitors, Plant Sci., 2001, vol. 161, pp. 469–479.Google Scholar
  56. 56.
    Asselbergh, B., Achuo, A.E., Hofte, M., and van Gijsegem, F., Abscisic Acid Deficiency Leads to Rapid Activation of Tomato Defense Responses upon Infection with Erwinia chrysanthemi, Mol. Plant Pathol., 2008, vol. 9, pp. 11–24.PubMedGoogle Scholar
  57. 57.
    Yarullina, L.G., Ibragimov, R.I., Maksimov, I.V., and Akhmetov, R.R., Defense Reaction in Wheat Affecting by Gaeumannomyces graminis (Sacc)., Dokl. Ross. Akad. S.-kh. Nauk, 1999, no. 4, pp. 8–9.Google Scholar
  58. 58.
    Leubner-Metzger, G., Frundt, C., Vogeli-Lande, R., and Meins, F.J.P., Class β-1,3-Glucanases in the Endosperm of Tobacco during Germination, Plant Physiol., 1995, vol. 109, pp. 751–759.PubMedGoogle Scholar
  59. 59.
    Henfling, J.W.D.M., Bostock, R., and Küc, J., Effect of Abscisic Acid on Rishitin and Lubimin Accumulation and Resistance to Phytophthora infestans and Cladosporium cucumerinum in Potato Tuber Tissue Slices, Phytopathology, 1980, vol. 70, pp. 1074–1078.Google Scholar
  60. 60.
    Abu Qamar, S., Chen, X., Dhawan, R., Bluhm, B., Salmeron, J., Lam, S., Dietrich, R.A., and Mengiste, T., Expression Profiling and Mutant Analysis Reveals Complex Regulatory Networks Involved in Arabidopsis Response to Botrytis Infection, Plant J., 2006, vol. 48, pp. 28–44.Google Scholar
  61. 61.
    Jiang, C.-J., Aono, M., Tamaoki, M., Maeda, S., Sugano, S., Mori, M., and Takatsuji, H., SAZ, a New SUPREMANLike Protein, Negatively Regulates a Subset of ABAResponsive Genes in Arabidopsis, Mol. Gen. Genet., 2008, vol. 279, pp. 183–192.Google Scholar
  62. 62.
    Lin, F., Xu, S.L., Ni, W.M., Chu, Z.G., Xu, Z.H., and Xue, H.W., Identification of ABA-Responsive Genes in Rice Shoots via cDNA Macroarray, Cell Res., 2003, vol. 13, pp. 59–68.PubMedGoogle Scholar
  63. 63.
    Kuwabara, C., Takezava, D., Shimada, T., Hamada, T., Fujikawa, S., and Keita, A., Abscisic Acid and Cold-Induced Thaumatin-Like Protein in Winter Wheat Has an Antifungal Activity against Snow Mould, Microdochium nivale, Physiol. Plant., 2002, vol. 115, pp. 101–110.Google Scholar
  64. 64.
    Carrera, E. and Prat, S., Expression of the Arabidopsis abil-1 Mutant Allele Inhibits Proteinase Inhibitor Wound-Induction in Tomato, Plant J., 1998, vol. 15, pp. 765–771.PubMedGoogle Scholar
  65. 65.
    Zhang, A., Jiang, M., Zhang, J., Ding, H., Xu, S., Hu, X., and Tan, M., Nitric Oxide Induced by Hydrogen Peroxide Mediates Abscisic Acid Induced Activation of the Mitogen-Activated Protein Kinase Cascade Involved in Antioxidant Defense in Maize Leaves, New Phytol., 2007, vol. 175, pp. 36–50.PubMedGoogle Scholar
  66. 66.
    Leung, J., Merlot, S., and Giraudat, J., The Arabidopsis ABSCISIC ACID INSENSITIVE2 (ABI2) and ABI1 Genes Encode Homologous Protein Phosphatases 2C Involved in Abscisic Acid Signal Transduction, Plant Cell, 1997, vol. 7, pp. 759–771.Google Scholar
  67. 67.
    Sokolovski, S., Hills, A., Gay, R.A., and Blatta, M.R., Functional Interaction of the SNARE Protein NtSyp121 in Ca2+ Channel Gating, Ca2+ Transients and ABA Signaling of Stomatal Guard Cells, Mol. Plant., 2008, vol. 1, pp. 347–358.PubMedGoogle Scholar
  68. 68.
    Assaad, F.F., Qiu, J.-L., Youngs, H., Ehrhardt, D., Zimmerli, L., Kalde, M., Wanner, G., Peck, S.C., Edwards, H., Ramonell, K., Somerville, C.R., and Thordal-Christensen, H.H., The PEN1 Syntaxin Defines a Novel Cellular Compartment upon Fungal Attack and Is Required for the Timely Assembly of Papillae, Mol. Biol. Cell, 2004, vol. 15, pp. 5118–5129.PubMedGoogle Scholar
  69. 69.
    Collins, N.C., Thordal-Christensen, H., Lipka, V., Bau, S., Kombrink, E., Qiu, J.L., Huckelhoven, R., Stein, M., Freialdenhoven, A., Somerville, S.C., and Schulze-Lefert P. SNARE-Protein Mediated Disease Resistance at the Plant Cell Wall, Nature, 2003, vol. 425, pp. 973–977.PubMedGoogle Scholar
  70. 70.
    Ludwig, A.A., Romeis, T., and Jones, J.D.G., CDPKMediated Signaling Pathways: Specificity and Cross-Talk, J. Exp. Bot., 2004, vol. 55, pp. 181–188.PubMedGoogle Scholar
  71. 71.
    Grill, E. and Christmann, A., A Plant Receptor with a Big Family, Science, 2007, vol. 315, pp. 1676–1677.PubMedGoogle Scholar
  72. 72.
    Mengiste, T., Chen, X., Salmeron, J., and Dietrich, R., The BOTRYTIS SUSCEPTIBLE1 Gene Encodes an R2R3MYB Transcription Factor Protein That Is Required for Biotic and Abiotic Stress Responses in Arabidopsis, Plant Cell, 2003, vol. 15, pp. 2551–2565.PubMedGoogle Scholar
  73. 73.
    Beaudoin, N., Serizet, C., Gosti, F., and Giraudat, J., Interactions between Abscisic Acid and Ethylene Signaling Cascades, Plant Cell, 2000, vol. 12, pp. 1103–1115.PubMedGoogle Scholar
  74. 74.
    Hu, X., Jang, M., Zhang, J., Lin, F., and Tan, M., Calcium-Calmodulin Is Required for Abscisic Acid-Induced Antioxidant Defense and Function Both Upstream and Downstream of H2O2 Production in Leaves of Maize (Zea mays) Plants, New Phytol., 2007, vol. 173, pp. 27–38.PubMedGoogle Scholar
  75. 75.
    Klessig, D., Durner, J., Noad, R., Navarre, R., Wendehenne, D., Kumar, D., Zhou, J., Shah, J., Zhang, S., Kachroo, P., Trifa, Y., Pontier, D., Lam, E., and Silva, H., Nitric Oxide and Salicylic Acid Signaling in Plant Defense, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 8849–8855.PubMedGoogle Scholar
  76. 76.
    Hung, K.T., Hsu, Y.T., and Kao, C.H., Hydrogen Peroxide Is Involved in Methyl Jasmonate-Induced Senescence of Rice Leaves, Physiol. Plant., 2006, vol. 127, pp. 293–303.Google Scholar
  77. 77.
    Prats, E., Mur, L.A.J., Sanderson, R., and Carver, T.L.W., Nitric Oxide Contributes Both to Papilla-Based Resistance and the Hypersensitive Response in Barley Attacked by Blumeria graminis f. sp. hordei, Mol. Plant Pathol., 2005, vol. 6, pp. 65–78.Google Scholar
  78. 78.
    Kulaeva, O.N. and Prokoptseva, O.S., Recent Advances in the Study of Mechanisms of Action of Phytohormones, Biochemistry (Moscow), 2004, vol. 69, pp. 233–247.PubMedGoogle Scholar
  79. 79.
    Wang, P.-C., Du, Y.-Y., An, G.-Y., Zhou, Y., Miao, C., and Song, C.-P., Analysis of Global Expression Profiles of Arabidopsis Genes under Abscisic Acid and H2O2 Applications, J. Integr. Plant Biol., 2006, vol. 48, pp. 62–74.Google Scholar
  80. 80.
    Guan, L., Zhao, J., and Scandalios, J.G., cis-Elements and trans-Factors That Regulate Expression of the Maize Cat1 Antioxidant Gene in Response to ABA and Osmotic Stress: H2O2 Is the Likely Intermediary Signaling Molecule for the Response, Plant J., 2000, vol. 22, pp. 87–95.PubMedGoogle Scholar
  81. 81.
    Khairullin, R.M., Maksimov, I.V., and Yusupova, Z.R., Increase in the Activity of Peroxidase Anion Isoforms in Wheat Affected by Septoria nodorum and Possible Role of IAA and ABA, Mikol. Fitopatol., 2001, vol. 35, pp. 47–53.Google Scholar
  82. 82.
    Lebedeva, O.V., Ezhova, T.A., Musin, S.M., Radyukina, N.L., and Shestakov, S.V. PXD Gene Controls Synthesis of Three Anionic Peroxidase Isoforms in Arabidopsis thaliana, Biol. Bull., 2003, vol. 30, pp. 124–132.Google Scholar
  83. 83.
    Young-Cheol, K., Soo-Yong, K., Kyung-Hee, P., Doli, C., and Park, J.M., Suppression of CaCYP1, a Novel Cytohrome P450 Gene, Compromises the Basal Pathogen Defense Response of Pepper Plants, Biochem. Biophys. Res. Commun., 2006, vol. 345, pp. 638–645.Google Scholar
  84. 84.
    Nyangulu, J.M., Galka, M.M., Jadhav, A., Gai, Y., Graham, C.M., Nelson, K.M., Cutlier, A.J., Taylir, D.C., Banowetz, G.M., and Abrams, S.R., An Affinity Probe for Isolation of Abscisic Acid-Binding Proteins, J. Am. Chem. Soc., 2005, vol. 127, pp. 1662–1664.PubMedGoogle Scholar
  85. 85.
    Bellaire, B.A., Carmody, J., Braud, J., Gossett, D.R., Banks, S.W., Lucas, M.C., and Fowler, T.E., Involvement of Abscisic Acid Dependent and Independent Pathways in the Up Regulation of Antioxidant Enzyme Activity during NaCl Stress in Cotton Callus Tissue, Free Radic. Res., 2000, vol. 33, pp. 531–545.PubMedGoogle Scholar
  86. 86.
    Anderson, J.P., Badruzsaufari, E., Schenk, P.M., Manners, J.M., Desmond, O.J., Ehlert, C., Maclean, D.J., Ebert, P.R., and Kazan, K., Antagonistic Interaction between Abscisic Acid and Jasmonate-Ethylene Signaling Pathways Modulates Defense Gene Expression and Disease Resistance in Arabidopsis, Plant Cell, 2004, vol. 16, pp. 3460–3479.PubMedGoogle Scholar
  87. 87.
    Mura, A., Medda, R., Longu, S., Floris, G., Rinaldi, A.C., and Padiglia, A., A Ca2+/Calmodulin-Binding Peroxidase from Euphorbia Latex: Novel Aspects of Calcium-Hydrogen Peroxide Cross-Talk in the Regulation of Plant Defenses, Biochemistry, 2005, vol. 44, pp. 14 120–14 130.Google Scholar
  88. 88.
    Grossmann, K. and Hansen, H., Ethylene Triggered Abscisic Acid: A Principle in Plant Growth Regulation? Physiol. Plant., 2001, vol. 113, pp. 9–14.Google Scholar
  89. 89.
    Spollen, W.G., LeNoble, M.E., Samuels, T.D., Bernstein, N., and Sharp, R.E., Abscisic Acid Accumulation Maintains Maize Primary Root Elongation at Low Water Potentials by Restricting Ethylene Production, Plant Physiol., 2000, vol. 122, pp. 967–976.PubMedGoogle Scholar
  90. 90.
    Sharp, R.E., LeNoble, M.E., Else, M.A., Thorne, E.T., and Gherardi, F., Endogenous ABA Maintains Shoot Growth in Tomato Independently of Effects on Plant Water Balance: Evidence for an Interaction with Ethylene, J. Exp. Bot., 2000, vol. 51, pp. 1575–1584.PubMedGoogle Scholar
  91. 91.
    LeNoble, M.E., Spollen, W.G., and Sharp, R.E., Maintenance of Shoot Growth by Endogenous ABA: Genetic Assessment of the Involvement of Ethylene Suppression, J. Exp. Bot., 2004, vol. 55, pp. 237–245.PubMedGoogle Scholar
  92. 92.
    Yanagisawa, S., Yoo, S.D., and Sheen, J., Differential Regulation of EIN3 Stability by Glucose and Ethylene Signaling in Plants, Nature, 2003, vol. 425, pp. 521–525.PubMedGoogle Scholar
  93. 93.
    Lee, S.H., Lee, M.H., Chung, W.I., and Liu, J.R., WAPK, a Ser/Thr Protein Kinase Gene of Nicotiana tabacum, in Uniquely Regulated by Wounding, Abscisic Acid and Methyl Jasmonate, Mol. Gen. Genet., 1998, vol. 259, pp. 516–522.PubMedGoogle Scholar
  94. 94.
    Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) Function as Transcriptional Activators in Abscisic Acid Signaling, Plant Cell, 2003, vol. 15, pp. 63–78.PubMedGoogle Scholar
  95. 95.
    Kwak, J.M., Mori, I.C., Pei, Z.-M., Leonhardt, N., Torres, M.A., Dangl, J.L., Bloom, R.E., Bodde, S., Jones, J.D.G., and Schroeder, J.I., NADPH Oxidase AtrbohD and AtrbohF Genes Function in ROS-Dependent ABA Signaling in Arabidopsis, EMBO J., 2003, vol. 22, pp. 2623–2633.PubMedGoogle Scholar
  96. 96.
    Flors, V., Ton, J., van Doorn, R., Jakab, G., Garsia-Agustin, P., and Mauch-Mani, B., Interplay between JA, SA and ABA Signaling during Basal and Induced Resistance against Pseudomonas syringae and Alternaria brassicicola, Plant J., 2008, vol. 54, pp. 81–92.PubMedGoogle Scholar
  97. 97.
    Asselbergh, B. and Hofte, M., Basal Tomato Defenses to Botrytis cinerea Include Abscisic Acid-Depend Callose Formation, Physiol. Mol. Plant Pathol., 2007, vol. 71, pp. 33–40.Google Scholar
  98. 98.
    Ryerson, E., Li, A., Young, J.P., and Heath, M.C., Changes in Abscisic Acid Levels in Bean Leaves during the Initial Stages of Host and Nonhost Reactions to Rust Fungi, Physiol. Mol. Plant Pathol., 1993, vol. 43, pp. 265–273.Google Scholar
  99. 99.
    Ahn, I.-P., Kim, S., Lee, Y.-H., and Suh, S.-C., Vitamin B1-Induced Priming Is Dependent on Hydrogen Peroxide and the NPR1 Gene in Arabidopsis, Plant Physiol., 2007, vol. 143, pp. 838–848.PubMedGoogle Scholar
  100. 100.
    Hamiduzzaman, M.M., Jakab, G., Barnavon, L., Neuhaus, J.-M., and Mauch-Mani, B., β-Aminobutyric Acid-Induced Resistance against Downy Mildew in Grapevine Acts through the Potentiation of Callose Formation and JA Signaling, Mol. Plant-Microbe Interact., 2005, vol. 18, pp. 819–829.PubMedGoogle Scholar
  101. 101.
    Vogel, J. and Somerville, S., Isolation and Characterization of Powdery Mildew-Resistant Arabidopsis Mutants, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 1897–1902.PubMedGoogle Scholar
  102. 102.
    Pallas, J.A., Paiva, N.L., Lamb, C.J., and Dixon, R.A., Tobacco Plants Epigenetically Suppressed in Phenylalanine Ammonia-Lyase Expression Do Not Develop Systemic Acquired Resistance in Response to Infection by Tobacco Mosaic Virus, Plant J., 1996, vol. 10, pp. 281–293.Google Scholar
  103. 103.
    Maher, E.A., Bate, N.J., Ni, W., Elkind, Y., Dixon, R.A., and Lamb, C.J., Increased Disease Susceptibility of Transgenic Tobacco Plants with Suppressed Levels of Preformed Phenylpropanoid Products, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 7802–7806.PubMedGoogle Scholar
  104. 104.
    Lutali, E.C., Suttle, J.C., and Pederson, S.M., Regulatory Involvement of Abscisic Acid in Potato Tuber Wound-Healing, J. Exp. Bot., 2008, vol. 59, pp. 1175–1186.Google Scholar
  105. 105.
    Krasavina, M.S., Effect of Salicylic Acid on Solute Transport in Plants, Salicylic Acid: A Plant Hormone, Hayat, S. and Ahmad, A., Eds., Berlin: Springer-Verlag, 2007, pp. 25–68.Google Scholar
  106. 106.
    èstergaard, L., Petersen M., Mattsson O., and Mundy J., An Arabidopsis Callose Synthase, Plant Mol. Biol., 2002, vol. 49, pp. 559–566.Google Scholar
  107. 107.
    Shakirova, F.M., Sakhabutdinova, A.R., and Bezrukova, M.V., Changes in Hormonal Status of Wheat Seedlings Induced by Salicylic Acid and Salinity, Plant Sci., 2003, vol. 164, pp. 317–322.Google Scholar
  108. 108.
    Kamble, A. and Bhargava, S., Aminobutyric Acid-Induced Resistance in Brassica junicea against the Necrotrophic Pathogen Alternaria brassicae, J. Phytopathol., 2007, vol. 155, pp. 152–158.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Institute of Biochemistry and Genetics, Ufa Research CenterRussian Academy of SciencesUfaRussia

Personalised recommendations