Russian Journal of Plant Physiology

, Volume 56, Issue 5, pp 581–590 | Cite as

Jasmonate-dependent defense signaling in plant tissues

  • N. I. VasyukovaEmail author
  • O. L. Ozeretskovskaya


Depending on the stress type, plants activate various signal transduction pathways inducing the optimum defense process. This review is devoted to jasmonate (JA) dependent signaling involved in plant defense against biotic and abiotic stresses, including those determined by wounding, necrotrophic pathogens, pests, and herbivores. The sequence of major events of JA signaling is discussed. It is noted that JA signaling in plants is incorporated into a complex signaling network.

Key words

arabidopsis signaling pathways octadecenoid pathway jasmonic acid wound reparation stresses signal transduction systemin proteinase inhibitors coronatine mutant gene 



allene-oxide synthase

COI1, coi1

coronatine-insensitive 1




Ring-box protein


jasmonic acid

JAR1, jar1

jasmonate resistant 1




linolenic acid


methyl jasmonate


12-oxo-phytodienoic acid


proteinase inhibitor


salicylic acid

SCF complex

Skp1-cullin-F-box, where Skp1 is a protein associated with S-phase kinase


F-box protein


transcription factor


zink-finger protein expressed in inflorescence meristem


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Glazebrook, J., Contrasting Mechanisms of Defense against Biotrophic and Necrotrophic Pathogens, Plant Physiol., 2005, vol. 43, pp. 205–227.Google Scholar
  2. 2.
    Browse, J., Jasmonate: An Oxylipin Signal with Many Roles in Plants, Vit. Horm., 2005, vol. 72, pp. 431–456.CrossRefGoogle Scholar
  3. 3.
    Wasternack, C., Jasmonates: An Update on Biosynthesis, Signal Transduction and Action in Plant Stress Response, Growth and Development, Ann. Bot., 2007, vol. 100, pp. 681–697.PubMedCrossRefGoogle Scholar
  4. 4.
    Howe, G. and Jander, G., Plant Immunity to Insect Herbivores, Annu. Rev. Plant Biol., 2008, vol. 59, pp. 41–66.PubMedCrossRefGoogle Scholar
  5. 5.
    Browse, J. and Howe, G.A., Update on Jasmonate Signaling: New Weapons and a Rapid Response against Insect Attack, Plant Physiol., 2008, vol. 146, pp. 832–838.PubMedCrossRefGoogle Scholar
  6. 6.
    Kazan, K. and Manners, J.M., Jasmonate Signaling: Toward an Integrated View, Plant Physiol., 2008, vol. 146, pp. 1459–1468.PubMedCrossRefGoogle Scholar
  7. 7.
    Devoto, A., Nieto-Rostro, M., Xie, D., Ellis, C., Harmston, R., Patrick, E., Davis, J., Sherratt, L., Coleman, M., and Turner, J.G., COI1 Links Jasmonate Signaling and Fertility to the SCF Ubiquitin-Ligase Complex in Arabidopsis, Plant J., 2002, vol. 32, pp. 532–540.CrossRefGoogle Scholar
  8. 8.
    Lorenzo, O. and Solano, R., Molecular Players Regulating the Jasmonate Signaling Network, Curr. Opin. Plant Biol., 2005, vol. 8, pp. 532–540.PubMedCrossRefGoogle Scholar
  9. 9.
    Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, S.Y., Howe, G.A., and Browse, J., JAZ Repressor Proteins Are Targets of the SCF(COI1) Complex during Jasmonate Signaling, Nature, 2007, vol. 448, pp. 661–665.PubMedCrossRefGoogle Scholar
  10. 10.
    Chini, A., Fonseca, S., Fernandez, G., Adie, B., Chico, J.M., Lorenzo, O., Garcia-Casado, G., Lopez-Vidriero, I., Lozano, F.M., Ponce, M.R., Micol, J.L., and Solano, R., The JAZ Family of Repressors Is the Missing Link in Jasmonate Signaling, Nature, 2007, vol. 448, pp. 666–671.PubMedCrossRefGoogle Scholar
  11. 11.
    Katsir, L., Chung, H.S., Koo, A.J.K., and Howe, G.A., Jasmonate Signaling: A Conserved Mechanism of Hormone Sensing, Curr. Opin. Plant Biol., 2008, vol. 11, pp. 428–435.PubMedCrossRefGoogle Scholar
  12. 12.
    Balbi, V. and Devoto, A., Jasmonate Signaling Network in Arabidopsis thaliana: Crucial Regulatory Nodes and New Physiological Scenarios, New Phytol., 2008, vol. 177, pp. 301–318.PubMedGoogle Scholar
  13. 13.
    Feussner, I. and Wasternack, C., The Lipoxygenase Pathway, Annu. Rev. Plant Biol., 2002, vol. 53, pp. 275–297.PubMedCrossRefGoogle Scholar
  14. 14.
    Rozahl, S. and Feussner, I., Oxylipins, Plant Lipids: Biology, Utilization and Manipulation, Murphy, D.J., Ed., Oxford: Blackwell, 2004, vol. 53, pp. 329–454.Google Scholar
  15. 15.
    Ishiguro, S., Kawai-Oda, A., Ueda, J., Nishida, I., and Okada, K., The defective in anther dehiscence1 Gene Encodes a Novel Phospholipase A1 Catalyzing the Initial Step of Jasmonic Acid Biosynthesis, Which Synchronizes Pollen Maturation, Anther Dehiscence, and Flower Opening in Arabidopsis, Plant Cell, 2001, vol. 13, pp. 2191–2209.PubMedCrossRefGoogle Scholar
  16. 16.
    Laudert, D., Pfannschmidt, U., Lottspeich, F., Hollander-Czytko, H., and Weiler, E.W., Cloning, Molecular and Functional Characterization of Arabidopsis thaliana Allene Oxide Synthase (CYP 74), the First Enzyme of Octadecanoid Pathway to Jasmonates, Plant Mol. Biol., 1996, vol. 31, pp. 323–335.PubMedCrossRefGoogle Scholar
  17. 17.
    Laudert, D. and Weiler, E.W., Allene Oxide Synthase: A Major Control Point in Arabidopsis thaliana Octadecanoid Signaling, Plant J., 1998, vol. 15, pp. 675–684.PubMedCrossRefGoogle Scholar
  18. 18.
    Il’inskaya, L.I. and Ozeretskovskaya, O.L., Products of Lipoxygenase Oxidation of Fatty Acids as the Signal Molecules in Induced Plant Resistance, Prikl. Biokhim. Mikrobiol., 1998, vol. 34, pp. 467–479.Google Scholar
  19. 19.
    Grechkin, A.N. and Tarchevsky, I.A., The Lipoxygenase Signaling System, Russ. J. Plant Physiol., 1999, vol. 46, pp. 114–123.Google Scholar
  20. 20.
    Ziegler, J., Stenzel, I., Hause, B., Maucher, H., Hamberg, M., Grimm, R., Ganal, M., and Wasternack, C., Molecular Cloning of Allene Oxide Cyclase: The Enzyme Establishing the Stereochemistry of Octadecanoids and Jasmonates, J. Biol. Chem., 2000, vol. 275, pp. 19132–19138.PubMedCrossRefGoogle Scholar
  21. 21.
    Turner, J.G., Ellis, C., and Devoto, A., The Jasmonate Signal Pathway, Plant Cell, 2002, vol. 14, pp. 5153–5164.Google Scholar
  22. 22.
    Tarchevsky, I.A., Signal’nye sistemy kletok rastenii (Signal Transduction Pathways of Plant Cells), Moscow: Nauka, 2002.Google Scholar
  23. 23.
    Schaller, F., Biesgen, C., Mussig, C., Altmann, T., and Weiler, E.W., 12-Oxophytodienoate Reductase 3 (OPR3) Is the Isoenzyme Involved in Jasmonate Biosynthesis, Planta, 2000, vol. 210, pp. 979–984.PubMedCrossRefGoogle Scholar
  24. 24.
    Castillo, Cruz M., Martinaz, C., Buchala, A., Metraux, J.P., and Leon, J., Gene-Specific Involvement of β-Oxidation in Wound-Activated Responses in Arabidopsis, Plant Physiol., 2004, vol. 135, pp. 85–94.CrossRefGoogle Scholar
  25. 25.
    Li, C., Schilmiller, A.L., Liu, G.I., Jayanty, S., Sagaman, C., Vrebalov, J., Glovannoni, J.J., Yagi, K., and Korabyashi, Y., Role of β-Oxidation in Jasmonate Biosynthesis and Systemic Wound Signaling in Tomato, Plant Cell, 2005, vol. 17, pp. 971–986.PubMedCrossRefGoogle Scholar
  26. 26.
    Stenzel, I., Hause, B., Maucher, H., Pitzchke, A., Miersch, O., Ziegel, J., Ryan, C.A., and Wastermack, C., Allene Oxide Cyclase Dependence of the Wound Response and Vascular Bundle-Specific Generation of Jasmonates in Tomato — Amplification in Wound Signaling, Plant J., 2003, vol. 33, pp. 577–589.PubMedCrossRefGoogle Scholar
  27. 27.
    Spoel, S.H., Koornneef, A., Claessens, S.M.C., Korzelius, J.P., van Pelt, J.A., Mueller, M.J., Buchala, A.J., Metraux, J.-P., Brown, R., Kazan, K., van Loon, L.C., Dong, X., and Pieterse, C.M.J., NPR1 Modulates Cross-Talk between Salicylate- and Jasmonate-Dependent Defense Pathways through a Novel Function in the Cytosol, Plant Cell, 2003, vol. 15, pp. 760–770.PubMedCrossRefGoogle Scholar
  28. 28.
    Ryan, C.A., The Search for the Proteinase-Inhibitor Inducing Factor, PIIF, Plant Mol. Biol., 1992, vol. 19, pp. 123–133.PubMedCrossRefGoogle Scholar
  29. 29.
    Farmer, E.E. and Ryan, C.A., Interplant Communication — Airborne Methyl Jasmonate Induces Synthesis of Proteinase Inhibitors in Plant Leaves, Proc. Natl. Acad. Sci. USA, 1990, vol. 87, pp. 7713–7716.PubMedCrossRefGoogle Scholar
  30. 30.
    Choi, D., Bostock, R.M., Avdiushko, S.A., and Hilderbrand, D.F., Lipid-Derived Signals That Discriminate Wound- and Pathogen-Responsive Isoprenoid Pathways in Plants: Methyl Jasmonate and the Fungal Elicitor Arachidonic Acid Induce Different 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase Genes and Antimicrobial Isoprenoids in Solanum tuberosum L., Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 2329–2333.PubMedCrossRefGoogle Scholar
  31. 31.
    Xu, Y., Chang, P.-F.L., Liu, D., Narasimham, M.L., Raghothama, K.G., Hasegawa, P.M., and Bressan, R.A., Plant Defense Genes Are Synergistically Induced by Ethylene and Methyl Jasmonate, Plant Cell, 1994, vol. 6, pp. 1077–1085.PubMedCrossRefGoogle Scholar
  32. 32.
    Bell, E. and Muller, J.E., Characterization of an Arabidopsis Lipoxygenase Gene Responsive to Methyl Jasmonate and Wounding, Plant Physiol., 1993, vol. 103, pp. 1133–1137.PubMedCrossRefGoogle Scholar
  33. 33.
    Tarchevsky, I.A., Elicitor-Induced Signaling Pathways and Their Interaction, Russ. J. Plant Physiol., 2000, vol. 47, pp. 285–294.Google Scholar
  34. 34.
    Tarchevsky, I.A., Metabolizm rastenii pri stresse (Plant Metabolism under Stress Conditions), Kazan: Fen, 2001.Google Scholar
  35. 35.
    Staswick, P.E., JAZing Up Jasmonate Signaling, Trends Plant Sci., 2008, vol. 13, pp. 66–71.PubMedCrossRefGoogle Scholar
  36. 36.
    Staswick, P.E., Yuen, G.Y., and Lehman, C.C., Jasmonate Signaling Mutant of Arabidopsis Are Susceptible to the Soil Fungus Pythium irregulare, Plant J., 1998, vol. 15, pp. 747–754.PubMedCrossRefGoogle Scholar
  37. 37.
    Suzuki, H., Cameron, R., Shadle, G., Blount, J., Masuda, T., Yagi, K., and Taki, N., Signals for Local and Systemic Responses of Plants to Pathogen Attack, J. Exp. Bot., 2004, vol. 55, pp. 169–179.PubMedCrossRefGoogle Scholar
  38. 38.
    Kang, J.H., Wang, L., Giri, A., and Baldwin, I.T., Silencing Threonine Deaminase and JAR4 in Nicotiana attenuate Impairs Jasmonic Acid-Isoleucine-Mediated Defenses against Manduca sexta, Plant Cell, 2006, vol. 18, pp. 3303–3320.PubMedCrossRefGoogle Scholar
  39. 39.
    Rao, M.V., Lee, H., Creelman, R.A., Mullet, J.E., and Davis, K.R., Jasmonic Acid Signaling Modulates Ozone-Induced Hypersensitive Cell Death, Plant Cell, 2000, vol. 12, pp. 1633–1646.PubMedCrossRefGoogle Scholar
  40. 40.
    Halitschke, R. and Baldwin, I.T., Jasmonates and Related Compounds in Plant-Insect Interactions, J. Plant Growth Regul., 2004, vol. 23, pp. 238–245.Google Scholar
  41. 41.
    Staswick, P. and Tiryaki, I., The Oxylipin Signal Jasmonic Acid Is Activated by an Enzyme That Conjugates It to Isoleucine in Arabidopsis, Plant Cell, 2004, vol. 16, pp. 2117–2127.PubMedCrossRefGoogle Scholar
  42. 42.
    Staswick, P.E., Su, W., and Howell, S.H., Methyl Jasmonate Inhibition of Root Growth and Induction of Leaf Protein Are Decreased in an Arabidopsis thaliana Mutant, Proc. Natl. Acad. Sci. USA, 1992, vol. 89, pp. 6837–6840.PubMedCrossRefGoogle Scholar
  43. 43.
    Seo, H.S., Song, J.T., Cheong, J.T., Lee, Y.H., Lee, Y.W., Hwang, I., Lee, J.S., and Choi, Y.D., Jasmonic Acid Carboxyl Methyltransferase: A Key Enzyme for Jasmonate-Regulated Plant Responses, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 4788–4793.PubMedCrossRefGoogle Scholar
  44. 44.
    Stuhlfelder, C., Mueller, M.J., and Warzecha, H., Cloning and Expression of a Tomato cDNA Encoding a Methyl Jasmonate Cleaning Esterase, Eur. J. Biochem., 2004, vol. 271, pp. 2976–2983.PubMedCrossRefGoogle Scholar
  45. 45.
    Feyer, B., Benedetti, C.E., Penfold, C.N., and Turner, J.C., Arabidopsis Mutants Selected for Resistance to the Phytotoxin Coronatine Are Male Sterile, Insensitive to Methyl Jasmonate, and Resistant to a Bacterial Pathogen, Plant Cell, 1994, vol. 6, pp. 751–759.Google Scholar
  46. 46.
    Devoto, A. and Turner, J.G., Regulation of Jasmonate-Mediated Plant Responses in Arabidopsis, Ann. Bot., 2003, vol. 92, pp. 329–337.PubMedCrossRefGoogle Scholar
  47. 47.
    Katsir, L., Schilmiller, A.L., Staswick, P.E., He, S.Y., and Howe, G.A., COI1 Is a Critical Component of a Receptor for Jasmonate and the Bacterial Virulence Factor Coronatine, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 7100–7105.PubMedCrossRefGoogle Scholar
  48. 48.
    Thomma, B.P.H., Eggermont, K., Penninckx, I.A.M.A., Mauch-Mani, B., Vogelsang, R., Cammue, B.P.A., and Broekaert, W.F., Separate Jasmonate-Dependent and Salicylate-Dependent Defense Response Pathways in Arabidopsis Are Essential for Resistance to Distinct Microbial Pathogens, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 15107–15111.PubMedCrossRefGoogle Scholar
  49. 49.
    Li, L., Zhao, Y., McCaig, B.C., Wingerd, B.A., Wang, J., Whalon, M.E., Pichersky, E., and Howe, G.A., The Tomato Homolog of CORONATINE-INSENSITIVE1 Is Required for the Material Control of Seed Maturation, Jasmonate-Signaled Defense Responses, and Glandular Trichome Development, Plant Cell, 2004, vol. 16, pp. 126–143.PubMedCrossRefGoogle Scholar
  50. 50.
    Xie, D.X., Feys, B.F., James, S., Nieto-Rostro, M., and Turner, J.G., COI1: An Arabidopsis Gene Required for Jasmonate-Regulated Defense and Fertility, Science, 1998, vol. 280, pp. 1091–1094.PubMedCrossRefGoogle Scholar
  51. 51.
    Creelman, R.A., Jasmonate Perception: Characterization of COI1 Mutants Provides the First Clues, Trends Plant Sci., 1998, vol. 3, pp. 367–368.CrossRefGoogle Scholar
  52. 52.
    Yan, Y., Stolz, S., Chetelat, A., Reymond, P., Pagni, M., Dubugnon, L., and Farmer, E.E., A Downstream Mediator in the Growth Repression Limb of the Jasmonate Pathway, Plant Cell, 2007, vol. 19, pp. 2470–2483.PubMedCrossRefGoogle Scholar
  53. 53.
    Nishii, A., Kohchi, T., Chini, A., and Xie, D.X., Characterization of a Novel Gene Encoding a Putative Single Zink-Finger Protein, ZIM, Expressed during the Reproductive Phase in Arabidopsis thaliana, BioSci. Biotechnol. Biochem., 2000, vol. 64, pp. 1402–1409.PubMedCrossRefGoogle Scholar
  54. 54.
    Woodward, A.W. and Bartel, B., Auxin: Regulation, Action and Interaction, Ann. Bot., 2005, vol. 95, pp. 707–735.PubMedCrossRefGoogle Scholar
  55. 55.
    Dombrecht, B., Xue, G.P., Sprague, S.J., Kirkegaard, J.A., Ross, J.J., Reid, J.B., Fitt, G.P., Sewelam, N., Schenk, P.M., and Manners, J.M., MYC2 Differently Modulate Diverse Jasmonate-Dependent Functions in Arabidopsis, Plant Cell, 2007, vol. 19, pp. 2225–2245.PubMedCrossRefGoogle Scholar
  56. 56.
    Lorenzo, O., Chico, J.M., Sanchez-Serrano, J.J., and Solano, R., Jasmonate Insensitive1 Encodes a MYC Transcription Factor Essential to Discriminate between Different Jasmonate-Regulated Defense Responses in Arabidopsis, Plant Cell, 2004, vol. 16, pp. 1938–1950.PubMedCrossRefGoogle Scholar
  57. 57.
    Boter, M., Conserved MYC Transcription Factor Play a Key Role in Jasmonate Signaling Both in Tomato and Arabidopsis, Genes Dev., 2004, vol. 18, pp. 1577–1591.PubMedCrossRefGoogle Scholar
  58. 58.
    Staswick, P.E., Tiryaki, I., and Rowe, M.L., Jasmonate Response Locus jar1 and Enzymes of the Firefly Luciferase Superfamily That Show Activity on Jasmonic, Salicylic, and Indole-3-Acetic Acids in an Assay for Adenylation, Plant Cell, 2002, vol. 14, pp. 1405–1415.PubMedCrossRefGoogle Scholar
  59. 59.
    Howe, C.A., Lightner, J., Browse, J., and Ryan, C.A., An Octadecanoid Pathway Mutant (JL5) of Tomato Is Compromised in Signaling for Defense against Several Related Arabidopsis Genes Encode Insect Attack, Plant Cell, 1996, vol. 8, pp. 2067–2077.PubMedCrossRefGoogle Scholar
  60. 60.
    Cohen, Y., Gisi, U., and Niderman, T., Local and Systemic Protection against Phytophthora infestans Induced in Potato and Tomato Plants by Jasmonic Acid and Jasmonic-Methylester, Phytopathology, 1993, vol. 83, pp. 1054–1062.CrossRefGoogle Scholar
  61. 61.
    Halim, V.A., Vess, A., Scheel, D., and Rosahl, S., The Role of Salicylic Acid and Jasmonic Acid in Pathogen Defense, Plant Biol., 2006, vol. 8, pp. 307–313.PubMedCrossRefGoogle Scholar
  62. 62.
    Langraf, P., Feussner, I., Hunger, A., Scheel, D., and Rosahl, S., Systemic Accumulation of 12-Oxo-Phytodienoic Acid in SAR-Induced Potato Plants, Eur. J. Plant Pathol., 2002, vol. 108, pp. 279–283.CrossRefGoogle Scholar
  63. 63.
    Vasyukova, N.I. and Ozeretskovskaya, O.L., Induced Plant Resistance and Salicylic Acid, Prikl. Biokhim. Mikrobiol., 2007, vol. 43, pp. 405–411.Google Scholar
  64. 64.
    Weber, H., Chetelat, A., Caldelari, D., and Farmer, E.E., Divinyl Ether Fatty Acid Synthesis in Late Blight-Diseased Potato Leaves, Plant Cell, 1999, vol. 11, pp. 485–493.PubMedCrossRefGoogle Scholar
  65. 65.
    Halim, V.A., Hunger, A., Macioszek, V., Landgraf, P., Nurnberger, T., Scheel, D., and Rosahl, S., The Oligopeptide Elicitor Pep-13 Induces Salicylic Acid-Dependent and -Independent Defense Reactions in Potato, Physiol. Mol. Plant Pathol., 2004, vol. 64, pp. 311–318.CrossRefGoogle Scholar
  66. 66.
    Gobel, C., Feussner, I., Hamberg, M., and Rosahl, S., Oxylipin Profiling in Pathogen-Infected Potato Leaves, Biochim. Biophys. Acta, 2002, vol. 1584, pp. 55–64.PubMedGoogle Scholar
  67. 67.
    Vasyukova, N.I., Chalenko, G.I., Gerasimova, N.G., Valueva, T.A., and Ozeretskovskaya, O.L., Activation of Elicitor Protective Properties by the Usage of Systemic Signal Molecules at Potato and Phytophthora infestans Interaction, Prikl. Biokhim. Mikrobiol., 2008, vol. 44, pp. 236–240.Google Scholar
  68. 68.
    Green, T.R. and Ryan, C.A., Wound-Induced Proteinase Inhibitor in Plant Leaves — Possible Defense Mechanism against Insects, Science, 1972, vol. 175, pp. 776–777.PubMedCrossRefGoogle Scholar
  69. 69.
    Pearce, G., Strydom, D., Johnson, S., and Ryan, C.A., A Polypeptide from Tomato Leaves Induces Wound-Inducible Proteinase Inhibitor Proteins, Science, 1991, vol. 1991, pp. 995–998.Google Scholar
  70. 70.
    Scheer, J.M. and Ryan, C.A., The Systemin Receptor SR160 Lycopersicon peruvianum Is a Member of the LRR Receptor Kinase Family, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 9585–9590.PubMedCrossRefGoogle Scholar
  71. 71.
    Scheer, J.M., Pearce, G., and Ryan, C.A., Generation of Systemin Signaling in Tobacco by Transformation with the Tomato Systemin Receptor Kinase Gene, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 10114–10117.PubMedCrossRefGoogle Scholar
  72. 72.
    Schilmiller, A.L. and Howe, G.A., Systemic Signaling in the Wound Response, Curr. Opin. Plant Biol., 2005, vol. 8, pp. 369–377.PubMedCrossRefGoogle Scholar
  73. 73.
    Felix, G. and Boller, T., Systemin Induces Rapid Ion Fluxes and Ethylene Biosynthesis in Lycopersicon peruvianum Cells, Plant J., 1995, vol. 7, pp. 381–389.CrossRefGoogle Scholar
  74. 74.
    Ryan, C.A. and Moura, D.S., Systemic Wound Signaling in Plants: A New Perception, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 6519–6520.PubMedCrossRefGoogle Scholar
  75. 75.
    Stratman, J.W. and Ryan, C.A., Myelin Basic Protein Kinase Activity in Tomato Leaves Is Induced Systemically by Wounding and Increases in Response to Systemin and Oligosaccharide Elicitors, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 11085–11089.CrossRefGoogle Scholar
  76. 76.
    Schaller, A. and Oecking, C., Modulation of Plasma Membrane H+-ATPase Activity Differentially Activates Wound and Pathogen Defense Responses in Tomato Plants, Plant Cell, 1999, vol. 11, pp. 263–272.PubMedCrossRefGoogle Scholar
  77. 77.
    Usami, S., Banno, H., Ito, Y., Nishihama, R., and Machida, Y., Cutting Activates a 46-Kilodalton Protein Kinase in Plants, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 8660–8664.PubMedCrossRefGoogle Scholar
  78. 78.
    Lee, S., Suh, S., Kim, S., Crain, R.C., Kwak, J.M., Nam, H.-G., and Lee, Y., Tobacco MAP Kinase: A Possible Mediator in Wound Signal Transduction Pathways, Plant J., 1997, vol. 12, pp. 547–556.CrossRefGoogle Scholar
  79. 79.
    Narvaez-Vasquez, J., Florin-Christensen, J., and Ryan, C.A., Positional Specificity of a Phospholipase Activity Induced by Wounding, Systemin, and Oligosaccharide Elicitors in Tomato Leaves, Plant Cell, 1999, vol. 11, pp. 2249–2260.PubMedCrossRefGoogle Scholar
  80. 80.
    Howe, G.A., Jasmonates as Signals in the Wound Response, J. Plant Growth Regul., 2004, vol. 23, pp. 223–237.Google Scholar
  81. 81.
    Rojo, E., Leon, J., and Sanchez-Serrano, J.J., Cross-Talk between Wound Signaling Pathways Determines Local Versus Systemic Gene Expression in Arabidopsis thaliana, Plant J., 1999, vol. 20, pp. 135–142.PubMedCrossRefGoogle Scholar
  82. 82.
    Lee, G.I. and Howe, G.A., The Tomato Mutant spr1 Is Defective in Systemin Perception and the Production of a Systemic Wound Signal for Defense Gene Expression, Plant J., 2003, vol. 33, pp. 567–576.PubMedCrossRefGoogle Scholar
  83. 83.
    Rojo, E., Zouhar, J., Carter, C., Kovaleva, V., and Raikhel, N.V., A Unique Mechanism for Protein Processing and Degradation in Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 7389–7394.PubMedCrossRefGoogle Scholar
  84. 84.
    Doke, N., The Oxidative Burst: Roles in Signal Transduction and Plant Stress, Oxidative Stress and the Molecular Biology of Antioxidant Defenses, Cold Springer Harbor: Cold Springer Harbor Lab., 1997, pp. 785–813.Google Scholar
  85. 85.
    Ryan, C.A. and Pearce, G., Systemin: A Polypeptide Signal for Plant Defensive Genes, Annu. Rev. Cell Dev. Biol., 1998, vol. 14, pp. 1–17.PubMedCrossRefGoogle Scholar
  86. 86.
    Li, L., Li, C., Lee, G.I., and Howe, G.A., Distinct Roles for Jasmonate Synthesis and Action in the Systemic Wound Response of Tomato, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 6416–6421.PubMedCrossRefGoogle Scholar
  87. 87.
    Hause, B., Stenzel, I., Miersch, O., Maucher, H., Kramell, R., and Ziegler, J., Tissue-Specific Oxylipin Signature of Tomato Flowers — Allene Oxide Cyclase Is Highly Expressed in Distinct Flower Organs and Vascular Bundles, Plant J., 2000, vol. 24, pp. 113–126.PubMedCrossRefGoogle Scholar
  88. 88.
    Li, C., Liu, G., Xu, C., Lee, G.I., Bauer, P., Ling, H.Q., Ganal, M.W., and Howe, G.A., The Tomato Suppressor of Prosystemin-Mediated Response 2 Gene Encodes a Fatty Acid Desaturase Required for the Biosynthesis of Jasmonic Acid and the Production of a Systemic Wound Signal for Defense Gene Expression, Plant Cell, 2003, vol. 15, pp. 1646–1661.PubMedCrossRefGoogle Scholar
  89. 89.
    Hause, B., Hause, G., Kutter, C., Miersch, O., and Wasternack, C., Enzymes of Jasmonate Biosynthesis Occur in Tomato Sieve Elements, Plant Cell Physiol., 2003, vol. 44, pp. 643–648.PubMedCrossRefGoogle Scholar
  90. 90.
    Narvaez-Vasquez, J. and Ryan, C.A., The Cellular Localization of Prosystemin: A Functional Role for Phloem Parenchyma in Systemic Wound Signaling, Planta, 2004, vol. 218, pp. 360–369.PubMedCrossRefGoogle Scholar
  91. 91.
    Orlans, C.M., Pomerleau, J., and Ricco, R., Vascular Architecture Generates Fine Scale Variation in Systemic Induction of Proteinase Inhibitors in Tomato, J. Chem. Ecol., 2000, vol. 26, pp. 471–485.CrossRefGoogle Scholar
  92. 92.
    Schittko, U. and Baldwin, I.T., Constraints to Herbivore-Induced Systemic Responses: Bidirectional Signaling along Orthostichies in Nicotiana attenuate, J. Chem. Ecol, 2003, vol. 29, pp. 763–770.PubMedCrossRefGoogle Scholar
  93. 93.
    Ryan, C.A., The Systemin Signaling Pathway: Differential Activation of Plant Defensive Genes, Biochim. Biophys. Acta, 2000, vol. 1477, pp. 112–121.PubMedGoogle Scholar
  94. 94.
    Zhao, Y., Bender, C.L., Schaller, A., He, S.Y., and Howe, G.A., Virulence Systems of Pseudomonas syringae pv. tomato Promote Bacterial Speck Disease in Tomato by Targeting the Jasmonate Signaling Pathway, Plant J., 2003, vol. 36, pp. 485–499.PubMedCrossRefGoogle Scholar
  95. 95.
    Howe, G.A., Lee, G.I., Itoh, A., Li, L., and DeRocher, A.E., Cytochrome P450-Dependent Metabolism of Oxylipins in Tomato. Cloning and Expression of Allene Oxide Synthase and Fatty Acid Hydroperoxide Lyase, Plant Physiol., 2000, vol. 123, pp. 711–724.PubMedCrossRefGoogle Scholar
  96. 96.
    Nelson, C.E., Walkersimmons, M., Makus, D., Zuroska, G., Graham, J., and Ryan, C.A., Regulation of Synthesis and Accumulation of Proteinase Inhibitors in Leaves of Wounded Tomato Plants, ACS Symp. Ser., 1983, vol. 208, pp. 103–122.CrossRefGoogle Scholar
  97. 97.
    Zhang, Z.P. and Baldwin, I.T., Transport of [2-C14] Jasmonic Acid from Leaves to Roots Mimics Wound-Induced Changes in Endogenous Jasmonic Acid Pools in Nicotiana sylvestris, Planta, 1997, vol. 203, pp. 436–441.CrossRefGoogle Scholar
  98. 98.
    Farmer, E.E., Jonhson, R.R., and Ryan, C.A., Regulation of Expression of Proteinase-Inhibitor Genes by Methyl Jasmonate and Jasmonic Acid, Plant Physiol., 1992, vol. 98, pp. 995–1002.PubMedCrossRefGoogle Scholar
  99. 99.
    Kessier, A. and Baldwin, I.T., Plant Responses to Insect Herbivory: The Emerging Molecular Analysis, Annu. Rev. Plant Biol., 2002, vol. 53, pp. 299–328.CrossRefGoogle Scholar
  100. 100.
    Schenk, P.M., Kazan, K., Manners, J.M., Anderson, J.P., Simpson, R.S., Willson, I.W., and Maclean, D.J., Systemic Gene Expression in Arabidopsis during an Incompatible Interaction with Alternaria brassicicola, Plant Physiol., 2003, vol. 132, pp. 999–1010.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations