Advertisement

Characterization and expression profiling of cinnamate 4-hydroxylase gene from Salvia miltiorrhiza in rosmarinic acid biosynthesis pathway

  • B. Huang
  • Y. Duan
  • B. Yi
  • L. Sun
  • B. Lu
  • X. Yu
  • H. Sun
  • H. Zhang
  • W. Chen
Research Papers

Abstract

A novel cinnamate 4-hydroxylase (C4H) gene (designated as SmC4H) involved in the rosmarinic acid biosynthesis pathway is cloned from Salvia miltiorrhiza. The full-length cDNA of SmC4H is 1800 bp long with an open reading frame of 1512 bp encoding a polypeptide of 504 amino acid residues. Like other C4Hs, the predicted SmC4H polypeptide includes three domains: a heme-binding domain, a proline-rich region, and a P450 (E)EFRPER-motif region, which represents a typical structure of plant C4Hs. Analysis of SmC4H genomic DNA reveals that it contains 3 exons, 2 introns, the length of exons being highly conserved. Semiquantitative RT-PCR analysis revealed that the constitutive expression of SmC4H in the root or stem was much higher than in the leaf. Further expression analysis revealed that the signaling components of defense/stress pathways, such as methyl jasmonate, abscisic acid, and ultraviolet-B radiation, up-regulated the SmC4H transcript levels over the control. Calcium chloride and hydrogen peroxide, nevertheless, had no significant effect on SmC4H expression.

Key words

Salvia miltiorrhiza rosmarinic acid cinnamate 4-hydroxylase SmC4H gene reverse transcription-PCR UV-B ABA jasmonate 

Abbreviations

C4H

cinnamate 4-hydroxylase

CTAB

cetyl trimethyl ammonium bromide

DHPLA

3,4-dihydroxyphenyllactic acid

KAS

β-ketoacyl-acyl carrier protein synthase

MeJa

methyl jasmonate

ORF

open reading frame

P450

cyochrome P450

RA

rosmarinic acid

RACE

rapid amplification of cDNA ends

References

  1. 1.
    Tang, W. and Eisenbrand, G., Chinese Drugs of Plant Origin: Chemistry, Pharmacology, and Use in Traditional and Modern Medicine, Berlin: Springer-Verlag, 1992.Google Scholar
  2. 2.
    Petersen, M., Hausler, E., Karwatzki, B., and Meinhard, J., Proposed Biosynthetic Pathway for Rosmarinic Acid in Cell Cultures of Coleus blumei Benth, Planta, 1993, vol. 189, pp. 10–14.CrossRefGoogle Scholar
  3. 3.
    Gabriac, B., Werckreichhart, D., Teutsch, H., and Durst, F., Purification and Immunocharacterization of a Plant Cytochrome-P450 — the Cinnamic Acid 4-Hydroxylase, Arch. Biochem. Biophys., 1991, vol. 288, pp. 302–309.PubMedCrossRefGoogle Scholar
  4. 4.
    Teutsch, H.G., Hasenfratz, M.P., Lesot, A., Stoltz, C., Garnier, J.M., Jeltsch, J.M., Durst, F., and Werckreichhart, D., Isolation and Sequence of a cDNA-Encoding the Jerusalem-Artichoke Cinnamate 4-Hydroxylase, a Major Plant Cytochrome-P450 Involved in the General Phenylpropanoid Pathway, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 4102–4106.PubMedCrossRefGoogle Scholar
  5. 5.
    Fahrendorf, T. and Dixon, R.A., Stress Responses in Alfalfa (Medicago sativa L.): XVIII. Molecular Cloning and Expression of the Elicitor-Inducible Cinnamic Acid 4-Hydroxylase Cytochrome P450, Arch. Biochem. Biophys., 1993, vol. 305, pp. 509–515.PubMedCrossRefGoogle Scholar
  6. 6.
    Mizutani, M., Ward, E., Dimaio, J., Ohta, D., Ryals, J., and Sato, R., Molecular-Cloning and Sequencing of a cDNA-Encoding Mung Bean Cytochrome-P450 (P450c4h) Possessing Cinnamate 4-Hydroxylase Activity, Biochem. Biophys. Res. Commun., 1993, vol. 190, pp. 875–880.PubMedCrossRefGoogle Scholar
  7. 7.
    Jaakola, L., Pirttila, A.M., Halonen, M., and Hohtola, A., Isolation of High Quality RNA from Bilberry (Vaccinium myrtillus L.) Fruit, Mol. Biotechnol., 2001, vol. 19, pp. 201–203.PubMedCrossRefGoogle Scholar
  8. 8.
    Rechards, E.J., Preparation and Analysis of DNA, Short Protocol in Molecular Biology, New York: John Wiley and Sons, 1995.Google Scholar
  9. 9.
    Saitou, N. and Nei, M., The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees, Mol. Biol. Evol., 1987, vol. 4, pp. 406–425.PubMedGoogle Scholar
  10. 10.
    Thompson, J.D., Higgins, D.G., and Gibson, T.J., Clustal-W-Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice, Nucleic Acids Res., 1994, vol. 22, pp. 4673–4680.PubMedCrossRefGoogle Scholar
  11. 11.
    Kumar, S., Tamura, K., Jakobsen, I., and Nei, M., MEGA2: Molecular Evolutionary Genetics Analysis Software, Arizona: Arizona State Univ., 2001.Google Scholar
  12. 12.
    Felsenstein, J., Confidence Limits on Phylogenies: An Approach Using the Bootstrap, Evolution, 1985, vol. 39, pp. 783–791.CrossRefGoogle Scholar
  13. 13.
    Guex, N. and Peitsch, M.C., SWISS-MODEL and the Swiss-PdbViewer: An Environment for Comparative Protein Modeling, Electrophoresis, 1997, vol. 18, pp. 2714–2723.PubMedCrossRefGoogle Scholar
  14. 14.
    Mizutani, M., Ohta, D., and Sato, R., Isolation of a cDNA and a Genomic Clone Encoding Cinnamate 4-Hydroxylase from Arabidopsis and Its Expression Manner In Planta, Plant Physiol., 1997, vol. 113, pp. 755–763.PubMedCrossRefGoogle Scholar
  15. 15.
    Lambert, C., Leonard, N., de Bolle, X., and Depiereux, E., ESyPred3D: Prediction of Proteins 3D Structures, Bioinformatics, 2002, vol. 18, pp. 1250–1256.PubMedCrossRefGoogle Scholar
  16. 16.
    Yukimune, Y., Tabata, H., Higashi, Y., and Hara, Y., Methyl Jasmonate-Induced Overproduction of Paclitaxel and Baccatin III in Taxus Cell Suspension Cultures, Nat. Biotechnol., 1996, vol. 14, pp. 1129–1132.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhao, J., Fujita, K., Yamada, J., and Sakai, K., Improved Beta-Thujaplicin Production in Cupressus lusitanica Suspension Cultures by Fungal Elicitor and Methyl Jasmonate, Appl. Microbiol. Biotechnol., 2001, vol. 55, pp. 301–305.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhao, J., Hu, Q., Guo, Y.Q., and Zhu, W.H., Elicitor-Induced Indole Alkaloid Biosynthesis in Catharanthus roseus Cell Cultures Is Related to Ca2+ Influx and the Oxidative Burst, Plant Sci., 2001, vol. 161, pp. 423–431.CrossRefGoogle Scholar
  19. 19.
    Zhao, J., Zhu, W.H., and Hu, Q., Enhanced Catharanthine Production in Catharanthus roseus Cell Cultures by Combined Elicitor Treatment in Shake Flasks and Bioreactors, Enzyme Microb. Technol., 2001, vol. 28, pp. 673–681.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhao, J., Zhu, W.H., Hu, Q., and Wu, H.X., Improved Indole Alkaloid Production in Catharanthus roseus Suspension Cell Cultures by Various Chemicals, Biotechnol. Lett., 2000, vol. 22, pp. 1221–1226.CrossRefGoogle Scholar
  21. 21.
    Zhang, C.H., Yan, Q., Cheuk, W.K., and Wu, J.Y., Enhancement of Tanshinone Production in Salvia miltiorrhiza Hairy Root Culture by Ag+ Elicitation and Nutrient Feeding, Planta Med., 2004, vol. 70, pp. 147–151.PubMedCrossRefGoogle Scholar
  22. 22.
    Batard, Y., Schalk, M., Pierrel, M.A., Zimmerlin, A., Durst, F., and Werck-Reichhart, D., Regulation of the Cinnamate 4-Hydroxylase (CYP73A1) in Jerusalem Artichoke Tubers in Response to Wounding and Chemical Treatments, Plant Physiol., 1997, vol. 113, pp. 951–959.PubMedGoogle Scholar
  23. 23.
    Bell-Lelong, D.A., Cusumano, J.C., Meyer, K., and Chapple, C., Cinnamate-4-Hydroxylase Expression in Arabidopsis — Regulation in Response to Development and the Environment, Plant Physiol., 1997, vol. 113, pp. 729–738.PubMedCrossRefGoogle Scholar
  24. 24.
    Jin, H.L., Cominelli, E., Bailey, P., Parr, A., Mehrtens, F., Jones, J., Tonelli, C., Weisshaar, B., and Martin, C., Transcriptional Repression by AtMYB4 Controls Production of UV-Protecting Sunscreens in Arabidopsis, EMBO J., 2000, vol. 19, pp. 6150–6161.PubMedCrossRefGoogle Scholar
  25. 25.
    Schopfer, C.R. and Ebel, J., Identification of Elicitor-Induced Cytochrome P450 of Soybean (Glycine max L.) Using Differential Display of mRNA, Mol. Gen. Genet., 1998, vol. 258, pp. 315–322.PubMedCrossRefGoogle Scholar
  26. 26.
    Creelman, R.A. and Rao, M.V., The Oxylipin Pathway in Arabidopsis, Arabidopsis Book, Rockville: Am. Soc. Plant Biol., 2002.Google Scholar
  27. 27.
    Wasternack, C. and Hause, B., Jasmonates and Octadecanoids: Signals in Plant Stress Responses and Development, Prog. Nucl. Acid Res. Mol. Biol., 2002, vol. 72, pp. 165–221.CrossRefGoogle Scholar
  28. 28.
    Wasternack, C. and Parthier, B., Jasmonate-Signalled Plant Gene Expression, Trends Plant Sci., 1997, vol. 2, pp. 302–307.CrossRefGoogle Scholar
  29. 29.
    Li, J.Y., Oulee, T.M., Raba, R., Amundson, R.G., and Last, R.L., Arabidopsis Flavonoid Mutants Are Hypersensitive to UV-B Irradiation, Plant Cell, 1993, vol. 5, pp. 171–179.PubMedCrossRefGoogle Scholar
  30. 30.
    Lois, R., Accumulation of UV-Absorbing Flavonoids Induced by UV-B Radiation in Arabidopsis thaliana L. 1. Mechanisms of UV-Resistance in Arabidopsis, Planta, 1994, vol. 194, pp. 498–503.CrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • B. Huang
    • 1
    • 2
  • Y. Duan
    • 4
  • B. Yi
    • 1
    • 3
  • L. Sun
    • 3
  • B. Lu
    • 5
  • X. Yu
    • 1
    • 3
  • H. Sun
    • 1
    • 3
  • H. Zhang
    • 3
  • W. Chen
    • 1
    • 3
  1. 1.Department of PharmacyChangzheng Hospital, Second Military Medical UniversityShanghaiChina
  2. 2.Department of Pharmaceutical Analysis, School of PharmacySecond Military Medical UniversityShanghaiChina
  3. 3.Modern Research Center for Traditional Chinese MedicineSecond Military Medical UniversityShanghaiChina
  4. 4.College of Chemistry and Chemical Engineering, Institute of Pharmaceutical EngineeringSoutheast UniversityNanjingChina
  5. 5.Institute of Radiation MedicineAcademy of Military Medical ScienceBeijingChina

Personalised recommendations