Advertisement

Russian Journal of Plant Physiology

, Volume 55, Issue 1, pp 119–129 | Cite as

Superfamily of plant monomeric GTP-binding proteins: 2. Rab proteins are the regulators of vesicles trafficking and plant responses to stresses

  • I. E. Moshkov
  • G. V. Novikova
Lectures

Abstract

In plants, Rab proteins represent the largest family of monomeric GTP-binding proteins (mG-proteins). As distinct from animal cells comprising 40 subfamilies of Rab proteins, which are the key regulators of intracellular vesicular transport, numerous Rab proteins in Arabidopsis and other plant species could be grouped in only eight subfamilies on the basis of their functional properties. The available data concerning the involvement of these mG-proteins in the control of vesicle trafficking agree generally with the paradigms accepted for other eukaryotes. On the other hand, these proteins play an important role in plant responses to abiotic and biotic factors, indicating specific for plants functions of Rab proteins.

Key words

plants monomeric GTP-binding proteins Rab proteins exocytosis endocytosis biotic and abiotic factors signal transduction 

Abbreviations

AG

Golgi apparatus

CA

constitutively active

DN

dominant negative

ER

endoplasmic reticulum

GAP

GTPase-activating protein

GDI

guanine nucleotide dissociation inhibitor

GEP

guanine nucleotide exchange protein

GFP

green fluorescent protein

mG-proteins

monomeric GTP-binding proteins

PM

plasma membrane

RFP

red fluorescent protein

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Arabidopsis Genome Initiative. Analysis of the Genome Sequence of the Flowering Plant Arabidopsis thaliana, Nature, 2000, vol. 408, pp. 796–815.Google Scholar
  2. 2.
    Novick, P., Field, C., and Schekman, R., Identification of 23 Complementation Groups Required for Posttranslational Events in the Yeast Secretory Pathway, Cell, 1980, vol. 21, pp. 205–215.CrossRefPubMedGoogle Scholar
  3. 3.
    Salminen, A. and Novick, P.J., A Ras-Like Protein Is Required for a Post-Golgi Event in Yeast Secretion, Cell, 1987, vol. 49, pp. 527–538.CrossRefPubMedGoogle Scholar
  4. 4.
    Lazar, T., Gotte, M., and Gallwitz, D., Vesicular Transport: How Many Ypt/Rab-GTPases Make a Eukaryotic Cell? Trends Biochem. Sci., 1997, vol. 22, pp. 468–472.CrossRefPubMedGoogle Scholar
  5. 5.
    Segev, N., Ypt and Rab GTPases: Insight into Functions through Novel Interactions, Curr. Opin. Cell Biol., 2001, vol. 13, pp. 500–511.CrossRefPubMedGoogle Scholar
  6. 6.
    Zerial, M. and McBride, H., Rab Proteins as Membrane Organizers, Nat. Rev. Mol. Cell Biol., 2001, vol. 2, pp. 107–117.CrossRefPubMedGoogle Scholar
  7. 7.
    Takai, Y., Sasaki, T., and Matozaki, T., Small GTP-Binding Proteins, Physiol. Rev., 2001, vol. 81, pp. 153–208.PubMedGoogle Scholar
  8. 8.
    Ueda, T., Yoshizumi, T., Anai, T., Matsui, M., Uchimiya, H., and Nakano, A., AtGDI2, a Novel Arabidopsis Gene Encoding a Rab GDP Dissociation Inhibitor, Gene, 1998, vol. 206, pp. 137–143.CrossRefPubMedGoogle Scholar
  9. 9.
    Fukuda, M., Distinct Rab Binding Specificity of Rim1, Rim2, Rabphilin, and Noc2. Identification of a Critical Determinants of Rab3A/Rab27A Recognition by Rim2, J. Biol. Chem., 2003, vol. 278, pp. 15373–15380.CrossRefPubMedGoogle Scholar
  10. 10.
    Jensen, R.B., la Cour, T., Albrethsen, J., Nielsen, M., and Skriver, K., FYVE Zinc-Finger Proteins in the Plant Model Arabidopsis thaliana: Identification of PtdIns3P-Binding Residues by Comparison of Classic and Variant FYVE Domains, Biochem. J., 2001, vol. 1, pp. 165–173.CrossRefGoogle Scholar
  11. 11.
    Heras, B. and Drobak, B.K., PARF-1: An Arabidopsis thaliana FYVE-Domain Protein Displaying a Novel Eukaryotic Domain Structure and Phosphoinositide Affinity, J. Exp. Bot., 2002, vol. 53, pp. 565–567.CrossRefPubMedGoogle Scholar
  12. 12.
    Pereira-Leal, J.B. and Seabra, M.C., The Mammalian Rab Family of Small GTPases: Definition of Family and Subfamily Sequence Motifs Suggests a Mechanism for Functional Specificity in the Ras Superfamily, J. Mol. Biol., 2000, vol. 301, pp. 1077–1087.CrossRefPubMedGoogle Scholar
  13. 13.
    Pereira-Leal, J.B. and Seabra, M.C., Evolution of the Rab Family of Small GTP-Binding Proteins, J. Mol. Biol., 2001, vol. 313, pp. 889–901.CrossRefPubMedGoogle Scholar
  14. 14.
    Vernoud, V., Horton, A.C., Yang, Z., and Nielsen, E., Analysis of the Small GTPase Gene Superfamily of Arabidopsis, Plant Physiol., 2003, vol. 131, pp. 1191–1208.Google Scholar
  15. 15.
    Schlierf, B., Fey, G.H., Hauber, J., Hocke, G.M., and Rosorius, O., Rab11b Is Essential for Recycling of Transferrin to the Plasma Membrane, Exp. Cell Res., 2000, vol. 259, pp. 257–265.CrossRefPubMedGoogle Scholar
  16. 16.
    Volpicelli, L.A., Lah, J.J., Fang, G., Goldenring, J.R., and Levey, A.I., Rab11a and Myosin Vb Regulate Recycling of the M4 Muscarinic Acetylcholine Receptor, J. Neurosci., 2002, vol. 15, pp. 9776–9784.Google Scholar
  17. 17.
    Inaba, T., Nagano, Y., Nagasaki, T., and Sasaki, Y., Distinct Localization of Two Closely Related Ypt3/Rab11 Proteins on the Trafficking Pathway in Higher Plants, J. Biol. Chem., 2002, vol. 277, pp. 9183–9188.CrossRefPubMedGoogle Scholar
  18. 18.
    Kang, J.G., Yun, J., Kim, D.H., Chung, K.S., Fujioka, S., Kim, J.I., Dae, H.W., Yoshida, S., Takatsuto, S., Song, P.S., and Park, C.M., Light and Brassinosteroid Signals Are Integrated via a Dark-Induced Small G Protein in Etiolated Seedling Growth, Cell, 2001, vol. 105, pp. 625–636.CrossRefPubMedGoogle Scholar
  19. 19.
    Ueda, T., Anai, T., Tsukaya, H., Hirata, A., and Uchimiya, H., Characterization and Subcellular Localization of a Small GTP Binding Protein (Ara-4) from Arabidopsis: Conditional Expression under Control of the Promoter of the Gene for Heat-Shock Protein HSP81-1, Mol. Gen. Genet., 1996, vol. 250, pp. 533–539.PubMedGoogle Scholar
  20. 20.
    Preuss, M.L., Serna, J., Falbel, T.G., Bednarek, S.Y., and Nielsen, E., The Arabidopsis Rab GTPase RabA4b Localizes to the Tips of Growing Root Hair Cells, Plant Cell, 2004, vol. 16, pp. 1589–1603.CrossRefPubMedGoogle Scholar
  21. 21.
    Ueda, T., Matsuda, N., Uchimiya, H., and Nakano, A., Modes of Interaction between the Arabidopsis Rab Protein, Ara4, and Its Putative Regulator Molecules Revealed by a Yeast Expression System, Plant J., 2000, vol. 21, pp. 341–349.CrossRefPubMedGoogle Scholar
  22. 22.
    Zainal, Z., Tucker, G.A., and Lycett, G.W., A rab11-Like Gene Is Developmentally Regulated in Ripening Mango (Mangifera indica L.) Fruit, Biochim. Biophys. Acta, 1996, vol. 1314, pp. 187–190.CrossRefPubMedGoogle Scholar
  23. 23.
    Lu, C., Zainal, Z., Tucker, G.A., and Lycett, G.W., Developmental Abnormalities and Reduced Fruit Softening in Tomato Plants Expressing an Antisense Rab11 GTPase Gene, Plant Cell, 2001, vol. 13, pp. 1819–1833.CrossRefPubMedGoogle Scholar
  24. 24.
    Marin-Rodriguez, M.C., Orchard, J., and Seymour, G.B., Pectate Lyases, Cell Wall Degradation and Fruit Softening, J. Exp. Bot., 2002, vol. 53, pp. 2115–2119.CrossRefPubMedGoogle Scholar
  25. 25.
    Seymour, G.B., Manning, K., Eriksson, E.M., Popovich, A.H., and King, G.J., Genetic Identification and Genomic Organization of Factors Affecting Fruit Texture, J. Exp. Bot., 2002, vol. 53, pp. 2065–2071.CrossRefPubMedGoogle Scholar
  26. 26.
    Short, B., Preisinger, C., Korner, R., Kopajtich, R., Byron, O., and Barr, F.A., A GRASP55-Rab2 Effector Complex Linking Golgi Structure to Membrane Traffic, J. Cell Biol., 2001, vol. 155, pp. 877–883.CrossRefPubMedGoogle Scholar
  27. 27.
    Nebenführ, A. and Staehelin, L.A., Mobile Factories: Golgi Dynamics in Plant Cells, Trends Plant Sci., 2001, vol. 6, pp. 160–167.CrossRefPubMedGoogle Scholar
  28. 28.
    Boevink, P., Oparka, K., Cruz, S.S., Martin, B., Betteridge, A., and Hawes, C., Stacks on Tracks: The Plant Golgi Apparatus Traffics on an Actin/ER Network, Plant J., 1998, vol. 15, pp. 441–447.CrossRefPubMedGoogle Scholar
  29. 29.
    Crofts, A.J., Leborgne-Castel, N., Hillmer, S., Robinson, D.G., Phillipson, B., Carlsson, L.E., Ashford, D.A., and Denecke, J., Saturation of the Endoplasmic Reticulum Retention Machinery Reveals Anterograde Bulk Flow, Plant Cell, 1999, vol. 11, pp. 2233–2247.CrossRefPubMedGoogle Scholar
  30. 30.
    Boevink, P., Martin, B., Oparka, K., Cruz, S.S., and Hawes, C., Transport of Virally Expressed Green Fluorescent Protein through the Secretory Pathway in Tobacco Leaves Is Inhibited by Cold Shock and Brefeldin A, Planta, 1999, vol. 208, pp. 392–400.CrossRefGoogle Scholar
  31. 31.
    Cheung, A.Y., Chen, C.Y.H., Glaven, R.H., de Graaf, B.H.J., Vidali, L., Hepler, P.K., and Wu, H.M., Rab2 GTPase Regulates Vesicle Trafficking between the Endoplasmic Reticulum and the Golgi Bodies and Is Important to Pollen Tube Growth, Plant Cell, 2002, vol. 14, pp. 945–962.CrossRefPubMedGoogle Scholar
  32. 32.
    Batoko, H., Zheng, H.Q., Hawes, C., and Moore, I., A Rab1 GTPase Is Required for Transport between the Endoplasmic Reticulum and Golgi Apparatus and for Normal Golgi Movement in Plants, Plant Cell, 2000, vol. 12, pp. 2201–2217.CrossRefPubMedGoogle Scholar
  33. 33.
    Saint-Jore, C.M., Evins, J., Batoko, H., Brandizzi, F., Moore, I., and Hawes, C., Redistribution of Membrane Proteins between the Golgi Apparatus and Endoplasmic Reticulum in Plants Is Reversible and Not Dependent on Cytoskeletal Networks, Plant J., 2002, vol. 29, pp. 661–678.CrossRefPubMedGoogle Scholar
  34. 34.
    Bogdanove, A.J. and Martin, G.B., AvrPto-Dependent Pto-Interacting Proteins and AvrPto-Interacting Proteins in Tomato, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 8836–8840.CrossRefPubMedGoogle Scholar
  35. 35.
    Moshkov, I.E., Mur, L.A.J., Novikova, G.V., Smith, A.R., and Hall, M.A., Ethylene Regulates Monomeric GTPBinding Protein Gene Expression and Activity in Arabidopsis thaliana, Plant Physiol., 2003, vol. 131, pp. 1705–1717.Google Scholar
  36. 36.
    Moshkov, I.E., Novikova, G.V., Mur, L.A.J., Smith, A.R., and Hall, M.A., Ethylene Rapidly Upregulates the Activities of Both Monomeric GTP-Binding Proteins and Protein Kinase(s) in Epicotyls of Pisum sativum L., Plant Physiol., 2003, vol. 131, pp. 1718–1726.CrossRefPubMedGoogle Scholar
  37. 37.
    Chen, Y.-F., Randlett, M.D., Findell, J.L., and Schaller, G.E., Localization of the Ethylene Receptor ETR1 to the Endoplasmic Reticulum of Arabidopsis, J. Biol. Chem., 2002, vol. 277, pp. 19 861–19 866.Google Scholar
  38. 38.
    Zheng, H., Camacho, L., Wee, E., Batoko, H., Legen, J., Leaver, C.J., Malho, R., Hussey, P.J., and Moore, I., A Rab-E GTPase Mutant Acts Downstream of the Rab-D Subclass in Biosynthetic Membrane Traffic to the Plasma Membrane in Tobacco Leaf Epidermis, Plant Cell, 2005, vol. 17, pp. 2020–2036.CrossRefPubMedGoogle Scholar
  39. 39.
    Holstein, S.E.M., Clathrin and Plant Endocytosis, Traffic, 2002, vol. 3, pp. 614–620.CrossRefPubMedGoogle Scholar
  40. 40.
    Ueda, T., Yamaguchi, M., Uchimiya, H., and Nakano, A., Ara6, a Plant-Unique Novel Type Rab GTPase, Functions in the Endocytic Pathway of Arabidopsis thaliana, EMBO J., 2001, vol. 20, pp. 4730–4741.Google Scholar
  41. 41.
    Borg, S., Brandstrup, B., Jensen, T.J., and Poulsen, C., Identification of New Protein Species among 33 Different Small GTP-Binding Proteins Encoded by cDNAs from Lotus japonicus, and Expression of Corresponding mRNAs in Developing Root Nodules, Plant J., 1997, vol. 11, pp. 237–250.CrossRefPubMedGoogle Scholar
  42. 42.
    Bolte, S., Schiene, K., and Dietz, K.J., Characterization of a Small GTP-Binding Protein of the Rab 5 Family in Mesembryanthemum crystallinum with Increased Level of Expression during Early Salt Stress, Plant Mol. Biol., 2000, vol. 42, pp. 923–936.CrossRefPubMedGoogle Scholar
  43. 43.
    Bucci, C., Parton, R.G., Mather, I.H., Stunnenberg, H., Simons, K., Hoflack, B., and Zerial, M., The Small GTPase Rab5 Functions as a Regulatory Factor in the Early Endocytic Pathway, Cell, 1992, vol. 70, pp. 715–728.CrossRefPubMedGoogle Scholar
  44. 44.
    Ueda, T., Uemura, T., Sato, M.H., and Nakano, A., Functional Differentiation of Endosomes in Arabidopsis Cells, Plant J., 2004, vol. 40, pp. 783–789.CrossRefPubMedGoogle Scholar
  45. 45.
    Cheon, C., Lee, N., Siddique, A., Bal, A., and Verma, D., Roles of Plant Homologs of Rab1p and Rab7p in the Biogenesis of the Peribacteroid Membrane, a Subcellular Compartment Formed De Novo during Root Nodule Symbiosis, EMBO J., 1993, vol. 12, pp. 4125–4135.PubMedGoogle Scholar
  46. 46.
    Mazel, A., Leshem, Y., Tiwari, B.S., and Levine, A., Induction of Salt and Osmotic Stress Tolerance by Over-expression of an Intracellular Vesicle Trafficking Protein AtRab7 (AtRabG3e), Plant Physiol., 2004, vol. 134, pp. 118–128.CrossRefPubMedGoogle Scholar
  47. 47.
    Nahm, M.Y., Kim, S.W., Yun, D., Lee, S.Y., Cho, M.J., and Bahk, J.D., Molecular and Biochemical Analyses of OsRab7, a Rice Rab7 Homolog, Plant Cell Physiol., 2003, vol. 44, pp. 1341–1349.CrossRefPubMedGoogle Scholar
  48. 48.
    Kirchhausen, T., Three Ways to Make a Vesicle, Nat. Rev. Mol. Cell Biol., 2000, vol. 1, pp. 187–198.CrossRefPubMedGoogle Scholar
  49. 49.
    White, J., Johannes, L., Mallard, F., Girod, A., Grill, S., Reinsch, S., Keller, P., Tzschaschel, B., Echard, A., Goud, B., and Stelzer, E.H.K., Rab6 Coordinates a Novel Golgi to ER Retrograde Transport Pathway in Live Cells, J. Cell Biol., 1999, vol. 147, pp. 743–759.CrossRefPubMedGoogle Scholar
  50. 50.
    Storrie, B., Pepperkok, R., and Nilsson, T., Breaking the COPI Monopoly on Golgi Recycling, Trends Cell Biol., 2000, vol. 10, pp. 385–391.CrossRefPubMedGoogle Scholar
  51. 51.
    Robinson, D.G., Rogers, J.C., and Hinz, G., Post-Golgi, Pre-Vacuolar Compartments, Annu. Plant Rev., 2000, vol. 5, pp. 270–298.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations