Advertisement

Russian Journal of Plant Physiology

, Volume 54, Issue 5, pp 612–618 | Cite as

Inducible and constitutive mechanisms of salt stress resistance in Geum urbanum L.

  • N. L. Radyukina
  • Yu. V. Ivanov
  • A. V. Kartashov
  • N. I. Shevyakova
  • V. Yu. Rakitin
  • V. N. Khryanin
  • Vl. V. Kuznetsov
Research Papers

Abstract

The avens (Geum urbanum L.) seedlings were grown for 6 weeks until the expansion of five to six leaves and then exposed to salinity shock (300 mM NaCl in the nutrient medium) or to a gradual (within 4 days) increase in NaCl concentration from 100 to 400 mM. The dynamics of stress-dependent accumulation of Na+, Cl, proline, and polyamines in leaves and roots was measured, together with activities of antioxidant enzymes, namely, superoxide dismutase (SOD) and guaiacol-dependent peroxidase occurring in soluble, ionically bound, and covalently bound forms. It is shown that avens plants can adapt to gradual salinization by mobilizing stressinducible protective mechanisms (accumulation of proline and spermine) and by activating constitutive enzyme systems (SOD and peroxidase).

Key words

Geum urbanum salinization proline polyamines superoxide dismutase guaiacol peroxidases 

Abbreviations

ROS

reactive oxygen species

SOD

superoxide dismutase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kuznetsov, Vl.V., Roshchupkin, B.V., Khydyrov, B.V., and Borisova, N.N., Interaction of Constitutive and Inducible Plant Resistance under Salinization, Dokl. Akad. Nauk SSSR, 1990, vol. 314, pp. 509–512.Google Scholar
  2. 2.
    Zhu, J.-K., Plant Salt Tolerance, Trends Plant Sci., 2001, vol. 5, pp. 66–71.CrossRefGoogle Scholar
  3. 3.
    Slade, A.E. and Causton, D.R., The Germination of Game Goodland Herbaceous Species under Laboratory Condition: A Multifactorial Study, New Phytol., 1979, vol. 83, pp. 549–557.CrossRefGoogle Scholar
  4. 4.
    Kuznetsov, Vl.V. and Shevyakova, N.I., Proline under Stress: Biological Role, Metabolism, and Regulation, Russ. J. Plant Physiol., 1999, vol. 46, pp. 274–289.Google Scholar
  5. 5.
    Kuznetsov, Vl.V., Radyukina, N.L., and Shevyakova, N.I., Polyamines under Stress: Biological Role, Metabolism, and Regulation, Russ. J. Plant Physiol., 2006, vol. 53, pp. 583–604.CrossRefGoogle Scholar
  6. 6.
    Blokhina, O., Virolainen, E., and Fagerstedt, K.V., Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: A Review, Ann. Bot., 2003, vol. 91, pp. 179–194.PubMedCrossRefGoogle Scholar
  7. 7.
    Winter, K., CO2-Fixirungsreaktionen bei der Salzpflanze Mesembryanthemum crystallinum L. unter varierten Aubendingungen, Planta, 1973, vol. 114, pp. 75–85.CrossRefGoogle Scholar
  8. 8.
    Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid Determination of Free Proline for Water Stress Studies, Plant Soil, 1973, vol. 39, pp. 205–207.CrossRefGoogle Scholar
  9. 9.
    Beauchamp, Ch. and Fridovich, I., Superoxide Dismutase Improved Assays and an Assay Applicable to Acrylamide Gels, Anal. Biochem., 1971, vol. 44, pp. 276–287.PubMedCrossRefGoogle Scholar
  10. 10.
    Shevyakova, N.I., Stetsenko, L.A., Meshcheryakov, A.B., and Kuznetsov, Vl.V., The Activity of the Peroxidase System in the Course of Stress-Induced CAM Development, Russ. J. Plant Physiol., 2002, vol. 49, pp. 598–604.CrossRefGoogle Scholar
  11. 11.
    Esen, A., A Simple Method for Quantitative, Semiquantitative, and Qualitative Assay of Protein, Anal. Biochem., 1978, vol. 89, pp. 264–273.PubMedCrossRefGoogle Scholar
  12. 12.
    Flores, H.E. and Galston, A.W., Analysis of Polyamines in Higher Plants by Higher Performance Liquid Chromatography, Plant Physiol., 1982, vol. 69, pp. 701–706.PubMedCrossRefGoogle Scholar
  13. 13.
    Zaitsev, G.N., Matematicheskaya statistika v eksperimental’noi botanike (Statistics in Experimental Botany), Moscow: Nauka, 1984.Google Scholar
  14. 14.
    Kant, S., Kant, P., Raven, E., and Barak, S., Evidence that Differential Gene Expression between the Halophyte, Thellungiella halophila, and Arabidopsis thaliana Is Responsible for Higher Levels of Compatible Osmolyte Proline and Tight Control of Na+ Uptake in T. halophila, Plant, Cell Environ., 2006, vol. 29, pp. 1220–1234.CrossRefGoogle Scholar
  15. 15.
    Tonon, G., Kevers, C., Faivre-Rampant, O., Graziani, M., and Gaspar, Th., Effect of NaCl and Mannitol Iso-Osmotic Stresses on Proline and Free Polyamine Levels in Embryogenic Fraxinus angustifolia Callus, J. Plant Physiol., 2004, vol. 161, pp. 701–708.PubMedCrossRefGoogle Scholar
  16. 16.
    Smirnoff, N. and Cumes, Q.J., Hydroxyl Radicals Scavenging Activity of Compatible Solutes, Phytochemistry, 1989, vol. 28, pp. 1057–1059.CrossRefGoogle Scholar
  17. 17.
    Lutts, S. and Guerrier, G., Peroxidase Activities of Two Cultivars Differing in Salinity Tolerance as Affected by Proline and NaCl, Biol. Plant., 1995, vol. 37, pp. 577–586.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • N. L. Radyukina
    • 1
  • Yu. V. Ivanov
    • 1
  • A. V. Kartashov
    • 1
    • 2
  • N. I. Shevyakova
    • 1
  • V. Yu. Rakitin
    • 1
  • V. N. Khryanin
    • 2
  • Vl. V. Kuznetsov
    • 1
    • 3
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Belinskii Penza Pedagogical State UniversityPenzaRussia
  3. 3.Peoples’ Friendship UniversityMoscowRussia

Personalised recommendations