Russian Journal of Plant Physiology

, Volume 54, Issue 3, pp 381–387 | Cite as

Cytokinin-like growth regulators mitigate toxic action of zinc and nickel ions on maize seedlings

  • A. S. Lukatkin
  • N. V. Gracheva
  • N. N. Grishenkova
  • P. V. Dukhovskis
  • A. A. Brazaitite
Research Papers


Maize (Zea mays L.) seedlings grown in water culture in the presence of zinc and nickel ions were used with an effort to alleviate heavy metal toxicity by treating seeds with thidiazuron and kinetin (synthetic growth regulators with cytokinin-like activity). Heavy metals were shown to decrease germinability of seeds, suppress seedling growth, alter membrane permeability, and inhibit the activity of ascorbate peroxidase. Synthetic cytokinin-like agents alleviated deteriorative effects of heavy metals; the extent of alleviation depended on toxicant species and its concentration. The toxic effect of Zn2+ was effectively relieved by kinetin, whereas the Ni2+ toxicity was preferentially alleviated by thidiazuron.

Key words

Zea mays growth characteristics electrolyte leakage ascorbate peroxidase heavy metals zinc nickel thidiazuron kinetin 



ascorbate peroxidase


heavy metals


reactive oxygen species


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sadovnikova, L.K., Use and Restoration of Soils Polluted with Heavy Metals, Khim. Sel’sk. Khoz., 1995, no. 1, pp. 37–38.Google Scholar
  2. 2.
    Polevoi, V.V., Fiziologiya rastenii (Plant Physiology), Moscow: Vysshaya Shkola, 1989.Google Scholar
  3. 3.
    Clemens, S., Molecular Mechanisms of Plant Metal Tolerance and Homeostasis, Planta, 2001, vol. 212, pp. 475–486.PubMedCrossRefGoogle Scholar
  4. 4.
    Briat, J.-F. and Lebrun, M., Plant Responses to Metal Toxicity, C. R. Acad. Sci., Ser. 3, 1999, vol. 322, pp. 43–54.Google Scholar
  5. 5.
    L’Huillier, L., d’Auzac, J., Durand, M., and Michaud-Ferriure, N., Nickel Effects on Two Maize (Zea mays) Cultivars Growth, Structure, Ni Concentration, and Localization, Can. J. Bot., 1996, vol. 74, pp. 1547–1554.Google Scholar
  6. 6.
    El-Shintinawy, F. and El-Ansary, A., Differential Effect of Cd2+ and Ni2+ on Amino Acid Metabolism in Soybean Seedlings, Biol. Plant., 2000, vol. 43, pp. 79–84.CrossRefGoogle Scholar
  7. 7.
    Baccouch, S., Chaoui, A., and El Ferjani, E., Nickel Toxicity Induces Oxidative Damage in Zea mays Roots, J. Plant Nutr., 2001, vol. 24, pp. 1085–1097.CrossRefGoogle Scholar
  8. 8.
    Seregin, I.V., Kozhevnikova, A.D., Kazyumina, E.M., and Ivanov, V.B., Nickel Toxicity and Distribution in Maize Roots, Russ. J. Plant Physiol., 2003, vol. 50, pp. 711–718.CrossRefGoogle Scholar
  9. 9.
    Khudsar, T., Mahmooduzzafar, Iqbal, M., and Sairam, R.K., Zinc-Induced Changes in Morphophysiological and Biochemical Parameters in Artemisia annua, Biol. Plant., 2004, vol. 48, pp. 255–260.CrossRefGoogle Scholar
  10. 10.
    Demchenko, N.P., Kalimova, I.B., and Demchenko, K.N., Effect of Nickel on Growth, Proliferation, and Differentiation of Root Cells in Triticum aestivum Seedlings, Russ. J. Plant Physiol., 2005, vol. 52, pp. 220–228.CrossRefGoogle Scholar
  11. 11.
    Sharma, P.N., Bisht, S.S., Kumar, P., and Mishra, M.K., Induction of Oxidative Stress by Deficiency and Toxicity of Zinc in Wheat Plants Grown in Solution Culture, Indian J. Agric. Biochem., 1999, vol. 12, pp. 10–13.Google Scholar
  12. 12.
    Mittler, R., Oxidative Stress, Antioxidants and Stress Tolerance, Trends Plant Sci., 2002, vol. 7, pp. 405–410.PubMedCrossRefGoogle Scholar
  13. 13.
    Noctor, G. and Foyer, C.H., Ascorbate and Glutathione: Keeping Active Oxygen under Control, Annu. Rev. Plant Physiol., 1998, vol. 49, pp. 249–279.CrossRefGoogle Scholar
  14. 14.
    Asada, K., Ascorbate Peroxidase: A Hydrogen Peroxide-Scavenging Enzyme in Plants, Physiol. Plant., 1992, vol. 85, pp. 235–241.CrossRefGoogle Scholar
  15. 15.
    Shigeoka, S., Ishikawa, T., Tamoi, M., Miyangawa, Y., Takeda, T., Yabuta, Y., and Yoshimura, K., Regulation and Functions of Ascorbate Peroxidase Isoenzymes, J. Exp. Bot., 2002, vol. 53, pp. 1305–1319.PubMedCrossRefGoogle Scholar
  16. 16.
    Wozny, A., Schneider, J., and Gwozdz, E.A., The Effect of Lead and Kinetin on Greening Barley Leaves, Biol. Plant., 1995, vol. 37, pp. 541–552.Google Scholar
  17. 17.
    Ghorbanli, M., Kaveh, S.H., and Serehr, M.F., Effects of Cadmium and Gibberellin on Growth and Photosynthesis of Glycine max, Photosynthetica, 1999, vol. 37, pp. 627–631.CrossRefGoogle Scholar
  18. 18.
    Lukatkin, A.S., Bashmakov, D.I., and Kipaikina, N.V., Protective Role of Thidiazuron Treatment on Cucumber Seedlings Exposed to Heavy Metals and Chilling, Russ. J. Plant Physiol., 2003, vol. 50, pp. 305–307.CrossRefGoogle Scholar
  19. 19.
    Ul’yanenko, L.N., Kruglov, S.V., Filipas, A.S., and Arysheva, S.P., Effects of Growth Regulators on Barley Plant Development and Accumulation of Heavy Metals and Caesium-137, Agrokhimiya, 2004, no. 12, pp. 15–22.Google Scholar
  20. 20.
    Kulaeva, O.N. and Kusnetsov, V.V., Recent Advances and Horizons of the Cytokinin Studying, Russ. J. Plant Physiol., 2002, vol. 49, pp. 561–575.CrossRefGoogle Scholar
  21. 21.
    Bashmakov, D.I. and Lukatkin, A.S., Effects of Heavy Metal Concentrations on Maize Growth in Water Culture, Rol’botanicheskogo sada v introduktsii, sokhranenii redkikh vidov rastenii i ekologicheskom vospitanii (Role of Botanical Garden in Introduction and Preservation of Rare Plant Species, and Ecological Education), Mater. region. nauch. konf., posvyashchennoi 40-letiyu botanicheskogo sada Mordovskogo gos. un-ta im. N.P. Ogareva (Proc. Region Sci. Conf. Devoted 40-Anniversary of Ogarev Botanical Garden at Mordovsk. Gos. Univ.), Saransk: Mordovsk. Gos. Univ., 2001, pp. 67–69.Google Scholar
  22. 22.
    Zhurbitskii, Z.I. and Il’in, M.V., Teoriya i praktika vegetatsionnogo metoda (Vegetation Method: Theory and Practice), Moscow: Nauka, 1968.Google Scholar
  23. 23.
    Lukatkin, A.S., Contribution of Oxidative Stress to the Development of Cold-Induced Damage to Leaves of Chilling-Sensitive Plants: 2. The Activity of Antioxidant Enzymes during Plant Chilling, Russ. J. Plant Physiol., 2002, vol. 49, pp. 782–788.CrossRefGoogle Scholar
  24. 24.
    Zauralov, O.A. and Lukatkin, A.S., Kinetics of Electrolyte Exoosmosis in Chilling-Sensitive Plants Exposed to Low Temperature, Sov. Plant Physiol., 1985, vol. 32, pp. 347–354.Google Scholar
  25. 25.
    Zhang, F., Shi, W., Jin, Z., and Shen, Z., Response of Antioxidant Enzymes in Cucumber Chloroplasts to Cadmium Toxicity, J. Plant Nutr., 2003, vol. 26, pp. 1779–1788.CrossRefGoogle Scholar
  26. 26.
    Tewari, R.K., Kumar, P., Sharma, P.N., and Bisht, S.S., Modulation of Oxidative Stress Responsive Enzymes by Excess Cobalt, Plant Sci., 2002, vol. 162, pp. 381–388.CrossRefGoogle Scholar
  27. 27.
    Lidon, F.C. and Teixeira, M.G., Oxy Radicals Production and Control in the Chloroplast of Mn-Treated Rice, Plant Sci., 2000, vol. 152, pp. 7–15.CrossRefGoogle Scholar
  28. 28.
    Devi, S.R. and Prasad, M.N.V., Antioxidant Capacity of Brassica juncea Plants Exposed to Elevated Levels of Copper, Russ. J. Plant Physiol., 2005, vol. 52, pp. 205–208.CrossRefGoogle Scholar
  29. 29.
    Schickler, H. and Caspi, H., Response of Antioxidative Enzymes to Nickel and Cadmium Stress in Hyperaccumulator Plants of the Genus Alyssum, Physiol. Plant., 1999, vol. 105, pp. 39–44.CrossRefGoogle Scholar
  30. 30.
    Unyayar, S., Keles, Y., and Cekic, F.O., The Antioxidative Response of Two Tomato Species with Different Drought Tolerances as a Result of Drought and Cadmium Stress Combinations, Plant, Soil Environ., 2005, vol. 51, pp. 57–64.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • A. S. Lukatkin
    • 1
  • N. V. Gracheva
    • 1
  • N. N. Grishenkova
    • 1
  • P. V. Dukhovskis
    • 2
  • A. A. Brazaitite
    • 2
  1. 1.Department of Botany and Plant Physiology, Faculty of BiologyOgarev Mordovian State UniversitySaranskRussia
  2. 2.Lithuanian Institute of HorticultureBabtaiLithuania

Personalised recommendations