Russian Journal of Plant Physiology

, Volume 54, Issue 1, pp 1–9 | Cite as

The role of mesophyll cell tonoplast in determining the route of phloem loading. Thirty years of the studies of phloem loading

  • Yu. V. Gamalei


The evidence of light, electronic, and confocal microscopy collected within the 30-year period is reviewed to revise the concept of assimilate loading in phloem. It is the starting point located in mesophyll cells, which determines the route of assimilate export from mesophyll to phloem, rather than its final segment located in the terminal phloem. Plastids, photosynthesis, and the primary pool of photosynthates are localized in the vacuome of mesophyll cells. All chemicals applied to leaf surface are loaded to phloem via apoplast, even in the symplastic plants. It follows that photoassimilates are not loaded via apoplast because they cannot leave mesophyll and not due to the lack of pumps and transporters in the terminal phloem cells. Of two membranes separating vacuome and apoplast, the tonoplast confers the barrier function. The impossibility to overcome this barrier raises the hydrostatic pressure in the vacuome to the level that induces plasmodesma development between the cells. With the loss of tonoplast barrier function for assimilates, the latter leave for apoplast, this process is incompatible with building the vacuolar loading route. Two alternative mechanisms of phloem loading diverge initially because of different barrier functions of tonoplast. The radical change in these functions makes up the crucial advantage of the young group of apoplastic dicot plants (about 20 000 species), whose evolution is associated with expansion of meadow-steppe vegetation 5–7 million years ago. Such change would evolve due to the climate differentiation in the late myocene period, when heat and moisture were lacking at vast territories. A large group of temperate herbs evolved and expanded because of these changes in the assimilate compartmentalization.

Key words

assimilate export phloem loading symplast plasmodesmata apoplast apoplastic labyrinth vacuome tonoplast export evolution 



endoplasmic reticulum.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pate, J.S. and Gunning, B.E.S., Vascular Transfer Cells in Angiosperm Leaves. A Taxonomic and Morphological Survey, Protoplasma, 1969, vol. 68, pp. 135–156.CrossRefGoogle Scholar
  2. 2.
    Gamalei, Yu.V., Symplastic Relations in Leaf Minor Veins of Fraxinus (Sugar Transport in Leaf), Bot. Zh. (Leningrad), 1974, vol. 59, pp. 980–987.Google Scholar
  3. 3.
    Geiger, D.B., Phloem Loading, Encyclopedia of Plant Physiology, New Ser., vol. 1, Transport in Plants, I. Phloem Transport, Zimmermann, M.H. and Milburn, J.A., Eds., Berlin: Springer-Verlag, 1975, pp. 395–431.Google Scholar
  4. 4.
    Eschrich, W. and Heyser, W., Biochemistry of Phloem Constituents, Encyclopedia of Plant Physiology, New Ser., vol. 1, Transport in Plants, I. Phloem Transport, Zimmermann, M.H. and Milburn, J.A., Eds., Berlin: Springer-Verlag, 1975, pp. 101–139.Google Scholar
  5. 5.
    Kursanov, A.L., Transport assimilyatov v rastenii, Moscow: Nauka, 1976. Translated under the title Assimilate Transport in Plants, Amsterdam: Elsevier, 1984.Google Scholar
  6. 6.
    Watson, L., Pate, J.S., and Gunning, B.E.S., Vascular Transfer Cells in Leaves of Leguminosae-Papilionoidae, Bot. J. Linn. Soc., 1977, vol. 74, pp. 123–130.Google Scholar
  7. 7.
    Gamalei, Yu.V. and Pakhomova, M.V., Leaf Minor Veins of Dicotyledons. 1. Structure and Typological Basis, Bot. Zh. (Leningrad), 1983, vol. 68, pp. 287–301.Google Scholar
  8. 8.
    Gamalei, Yu.V. and Pakhomova, M.V., Leaf Minor Veins of Dicotyledons. 2. Taxonomic Division of Basic Types, Bot. Zh. (Leningrad), 1983, vol. 68, pp. 428–440.Google Scholar
  9. 9.
    Gamalei, Yu.V. and Pakhomova, M.V., Leaf Minor Veins of Dicotyledons. 3. Structure, Functions, and Evolution, Bot. Zh. (Leningrad), 1984, vol. 69, pp. 1159–1166.Google Scholar
  10. 10.
    Fisher, D.G., Ultrastructure, Plasmodesmatal Frequency, and Solute Concentration in Green Areas of Variegated Coleus blumei Benth. Leaves, Planta, 1986, vol. 169, pp. 141–152.CrossRefGoogle Scholar
  11. 11.
    Gamalei, Yu.V., Structure and Function of Leaf Minor Veins in Trees and Herbs. A Taxonomic Review, Trees, 1989, vol. 3, pp. 96–110.CrossRefGoogle Scholar
  12. 12.
    Gamalei, Yu.V., Phloem Loading and Its Development Related to Plant Evolution from Trees to Herbs, Trees, 1991, vol. 5, pp. 50–64.CrossRefGoogle Scholar
  13. 13.
    Turgeon, R., Beebe, D.U., and Gowan, E., The Intermediary Cell: Minor Vein Anatomy and Raffinose Oligosaccharide Synthesis in the Scrophulariaceae, Planta, 1993, vol. 191, pp. 446–456.CrossRefGoogle Scholar
  14. 14.
    Gamalei, Yu.V., Transportnaya sistema sosudistykh rastenii (Transport System of Vascular Plants), St. Petersburg: St. Petersburg. Gos. Univ., 2004.Google Scholar
  15. 15.
    Gamalei, Yu.V., Pakhomova, M.V., Batashev, D.R., Razumovskaya, A.V., Voitsekhovskaya, O.V., and Sheremet’ev, S.N., Symplastic and Apoplastic Dicotyledons, Bot. Zh. (St. Petersburg), 2005, vol. 90, pp. 1473–1485.Google Scholar
  16. 16.
    Voitsekhovskaja, O.V., Koroleva, O.A., Batashev, D.R., Knop, Ch., Tomos, D., Gamalei, Yu.V., Heldt, H., and Lohaus, G., Phloem Loading in Two Scrophulariaceae Species: What Can Drive Symplastic Flow via Plasmodesmata? Plant Physiol., 2006, vol. 140, pp. 383–395.PubMedCrossRefGoogle Scholar
  17. 17.
    Turgeon, R., Phloem Loading and Plasmodesmata, Trends Plant Sci., 1996, vol. 1, pp. 418–423.CrossRefGoogle Scholar
  18. 18.
    Batashev, D.R. and Gamalei, Yu.V., Specific Features of Terminal Phloem in Leaves of Gentianaceae, Bot. Zh. (St. Petersburg), 2000, vol. 85, pp. 1–8.Google Scholar
  19. 19.
    Turgeon, R., Medville, R., and Nixon, K.C., The Evolution of Minor Vein Phloem and Phloem Loading, Am. J. Bot., 2001, vol. 88, pp. 1331–1339.Google Scholar
  20. 20.
    Batashev, D.R. and Gamalei, Yu.V., Terminal Phloem Organization in Apocynaceae, Bot. Zh. (St. Petersburg), 2005, vol. 91, pp. 1368–1377.Google Scholar
  21. 21.
    Köhler, R.H., Cao, J., Ziphel, W.R., Webb, W.W., and Hanson, M.R., Exchange of Protein Molecules through Connections between Higher Plant Plastids, Science, 1997, vol. 276, pp. 2039–2042.PubMedCrossRefGoogle Scholar
  22. 22.
    Gray, J.C., Sillivan, J.A., Hibberd, J.M., and Hansen, M.R., Stromules: Mobile Protrusions and Interconnections between Plastids, Plant Biol., 2001, vol. 3, pp. 223–233.CrossRefGoogle Scholar
  23. 23.
    Kwok, E. and Hanson, M.R., Microfilaments and Microtubules Control the Morphology and Movement of Non-Green Plastids and Stromules in Nicotiana tabacum, Plant J., 2003, vol. 35, pp. 16–26.PubMedCrossRefGoogle Scholar
  24. 24.
    Kwok, E. and Hanson, M.R., Stromules and the Dynamic Nature of Plastid Morphology, J. Microscopie, 2004, vol. 214, pp. 124–137.CrossRefGoogle Scholar
  25. 25.
    Waters, M.T., Fray, R.G., and Pyke, K.A., Stromule Formation Is Dependent upon Plastid Size, Plastid Differentiation Status and the Density of Plastids within the Cell, Plant J., 2004, vol. 39, pp. 655–667.PubMedCrossRefGoogle Scholar
  26. 26.
    Gunning, B.E.S., Plastid Stromules: Video Microscopy of Their Outgrowth, Refraction, Tensioning, Anchoring, Branching, Bridging, and Tip-Shedding, Protoplasma, 2005, vol. 225, pp. 33–42.PubMedCrossRefGoogle Scholar
  27. 27.
    Natesan, S.K.A., Sullivan, J.A., and Gray, J.C., Stromules: A Characteristic Cell-Specific Feature of Plastid Morphology, J. Exp. Bot., 2005, vol. 56, pp. 787–797.PubMedCrossRefGoogle Scholar
  28. 28.
    Haberlandt, G., Die Chlorophyllkörper der Selaginellen, Flora, 1888, vol. 71, pp. 291–308.Google Scholar
  29. 29.
    Senn, G., Die Gestalts-und Lageveränderung der Pflanzen Chromatophoren, Leipzig: Wilhelm Engelmann Verlag, 1908.Google Scholar
  30. 30.
    Arimura, S.-I., Hirai, A., and Tsutsumi, N., Numerous and Highly Developed Tubular Projections from Plastids Observed in Tobacco Epidermal Cells, Plant Sci., 2001, vol. 169, pp. 449–454.CrossRefGoogle Scholar
  31. 31.
    Gamalei, Yu.V., Dynamic Net Organization of Plastids and Mitochondria in Plant Cells, Tsitologiya, 2006, vol. 48, pp. 455–467.Google Scholar
  32. 32.
    Gamalei, Yu.V., Plant Vacuome, Usp. Sovrem. Biol., 2006, vol. 126, pp. 789–798.Google Scholar
  33. 33.
    Menzel, D., An Interconnected Plastidom in Acetobularia: Implications for the Mechanism of Chloroplast Motility, Protoplasma, 1994, vol. 179, pp. 166–171.CrossRefGoogle Scholar
  34. 34.
    Gamalei, Yu.V., Fromm, J., Krabel, D., and Eschrich, W., Cytoplasmic Streaming (Chloroplast Movement) as Response to Wounding in Elodea canadensis, J. Plant Physiol., 1994, vol. 144, pp. 518–524.Google Scholar
  35. 35.
    Famintsyn, A.S., Role of Symbiosis in Organism Evolution, Tr. Imp. Akad. Nauk, Fiz.-Mat. Otd., 1907, vol. 20, pp. 3–35.Google Scholar
  36. 36.
    Merezhkovskii, K.S., Teoriya dvukh plazm kak osnova simbiogenezisa i novogo ucheniya o proiskhozhdenii organizmov (Theory of Two Plasms as the Basis for Symbiogenesis and New Doctrine of Organism Origin), Kazan, 1909.Google Scholar
  37. 37.
    Cavalier-Smith, T., Membrane Heredity, Symbiogenesis, and the Multiple Origins of Algae, Biodiversity and Evolution, Arai, R., et al., Ed., Tokyo: Natl. Sci. Mus. Found., 1995, pp. 75–114.Google Scholar
  38. 38.
    Cavalier-Smith, T., Symbiogenesis, Membrane Heredity, and Cell Evolution, 100 Years of the Endosymbiotic Theory: From Prokaryotes to Eukaryotic Organelles, Soll, J., Ed., Hamburg, 2005, p. 12.Google Scholar
  39. 39.
    Pinevich, A.V. and Averina, S.G., Oksigennaya fototrofiya (Oxygenic Phototrophy), St. Petersburg: St. Petersburg. Gos. Univ., 2002.Google Scholar
  40. 40.
    Hortensteiner, S., Martinoia, E., and Amrhein, N., Reappearance of Hydrolytic Activities and Tonoplast Proteins in the Regenerated Vacuole of Evacuolated Protoplasts, Planta, 1992, vol. 187, pp. 113–121.CrossRefGoogle Scholar
  41. 41.
    Hortensteiner, S., Martinoia, E., and Amrhein, N., Factors Affecting the Re-Formation of Vacuoles in Evacuolated Protoplasts and the Expression of the Two Vacuolar Proton Pumps, Planta, 1994, vol. 192, pp. 395–403.PubMedCrossRefGoogle Scholar
  42. 42.
    Newell, J.M., Leigh, R.A., and Hall, J.L., Vacuole Development in Cultured Evacuolated Oat Mesophyll Protoplasts, J. Exp. Bot., 1998, vol. 49, pp. 817–827.CrossRefGoogle Scholar
  43. 43.
    Gamalei, Yu.V. and Pakhomova, M.V., Electron-Microscopic Evidence of the Vacuolar Nature of Phloem Exudate, Fiziol. Rast. (Moscow), 2002, vol. 47, pp. 181–193 (Russ. J. Plant Physiol., Engl. Transl., pp. 159–170).Google Scholar
  44. 44.
    Münch, E., Die Stoffbewegungen in der Pflanze, Jena: Fischer, 1930.Google Scholar
  45. 45.
    Gamalei, Yu.V., Floema lista (Leaf Phloem), Leningrad: Nauka, 1990.Google Scholar
  46. 46.
    Knop, Ch., Voitsekhovskaja, O.V., and Lohaus, G., Sucrose Transporters in Two Members of the Scrophulariaceae with Different Types of Transport Sugars, Planta, 2001, vol. 213, pp. 80–91.PubMedCrossRefGoogle Scholar
  47. 47.
    Leigh, R.A., The Role of the Vacuole in the Accumulation and Mobilization of Sucrose, Plant Growth Regul., 1984, vol. 2, pp. 339–346.CrossRefGoogle Scholar
  48. 48.
    Leigh, R.A., The Solute Composition of Vacuoles, Adv. Bot. Res., 1997, vol. 25, pp. 171–194.CrossRefGoogle Scholar
  49. 49.
    Marty, F., Plant Vacuoles, Plant Cell, 1999, vol. 11, pp. 587–599.PubMedCrossRefGoogle Scholar
  50. 50.
    Eschrich, W., Phloem Unloading of Photoassimilates, Transport of Photoassimilates, Baker, D.A. and Milburn, J.A., Eds., Harlow: Longman, 1989, pp. 206–264.Google Scholar
  51. 51.
    Feshchenko, N.F., Krasavina, M.S., Burmistrova, N.A., and Nosov, A.V., Phloem Unloading and Activity of Enzymes Hydrolyzing Sucrose in the Apex of the Growing Root, Dokl. Akad. Nauk, 2004, vol. 399, pp. 1–4.Google Scholar
  52. 52.
    Gamalei, Yu.V., Structure and Development of Phloem Cells. 1. Sieve-Tube Elements, Bot. Zh. (Leningrad), vol. 66, pp. 1081–1096.Google Scholar
  53. 53.
    Gamalei, Yu.V., Pakhomova, M.V., Syutkina, A.V., and Voitsekhovskaja, O.V., Compartmentation of Assimilate Fluxes in Leaves. 1. Ultrastructural Responses of Mesophyll and Companion Cells to the Alteration of Assimilate Export, Plant Biol., 2000, vol. 2, pp. 98–106.CrossRefGoogle Scholar
  54. 54.
    Voitsekhovskaja, O.V., Pakhomova, M.V., Syutkina, A.V., Gamalei, Yu.V., and Heber, U., Compartmentation of Assimilate Fluxes in Leaves. 2. Apoplastic Sugar Levels in Leaves of Plants with Different Companion Cell Types, Plant Biol., 2000, vol. 2, pp. 107–112.CrossRefGoogle Scholar
  55. 55.
    Lichtner, F.T., Phloem Transport of Agricultural Chemicals, Phloem Transport, Cronshaw, J., Lucas W.J., and Giaquinta, R.T., Eds., New York: Alan R. Liss, 1986, pp. 601–608.Google Scholar
  56. 56.
    Lichtner, F.T., Phloem Mobility of Crop Protection Products, Aust. J. Plant Physiol., 2000, vol. 27, pp. 609–614.Google Scholar
  57. 57.
    Zimmermann, M.H. and Ziegler, H., List of Sugars and Sugar Alcohols in Sieve-Tube Exudates, Encyclopedia of Plant Physiology, New Ser., vol. 1, Transport in Plants, I. Phloem Transport, Zimmermann, M.H. and Milburn, J.A., Eds., Berlin: Springer-Verlag, 1975, pp. 480–503.Google Scholar
  58. 58.
    Gamalei, Yu.V., Structure of Leaf Minor Veins and Transport Forms of Sugar, Dokl. Akad. Nauk SSSR, 1984, vol. 277, pp. 1513–1516.Google Scholar
  59. 59.
    Voitsekhovskaja, O.V., On the Role of Sugar Compartmentation and Stachyose Synthesis in Symplastic Phloem Loading, Göttingen: Cuvillier, 2002.Google Scholar
  60. 60.
    Keller, F. and Pharr, D.M., Metabolism of Carbohydrates in Sinks and Sources: Galactosyl-Sucrose Oligosaccharides, Photoassimilate Distribution in Plants and Crops: Source-Sink Relationships, Zamski, E. and Schaffer, A.A., Eds., New York: Marcel Dekker, 1996, pp. 157–183.Google Scholar
  61. 61.
    Komor, E., Sucrose Uptake by Cotyledons of Ricinus communis L.: Characteristics, Mechanism and Regulation, Planta, 1977, vol. 187, pp. 119–131.CrossRefGoogle Scholar
  62. 62.
    Giaquinta, R.T., Phloem Loading of Sucrose, Annu. Rev. Plant Physiol., 1983, vol. 34, pp. 347–387.CrossRefGoogle Scholar
  63. 63.
    Stadler, R. and Sauer, N., The Arabidopsis thaliana at SUC2 Gene Is Specifically Expressed in Companion Cells, Bot. Acta, 1996, vol. 109, pp. 299–306.Google Scholar
  64. 64.
    Webb, J.A. and Gorham, P.R., The Effect of Node Temperature on Assimilation and Translocation of 14C in Squash, Can. J. Bot., 1965, vol. 43, pp. 1009–1020.Google Scholar
  65. 65.
    Gamalei, Yu.V. and Pakhomova, M.V., The Time Course of Carbohydrate Transport and Storage in the Leaves of the Plant Species with Symplastic and Apoplastic Phloem Loaded under the Normal and Experimentally Modified Conditions, Fiziol. Rast. (Moscow), 2000, vol. 47, pp. 120–141 (Russ. J. Plant Physiol., Engl. Transl., pp. 109–128).Google Scholar
  66. 66.
    Ntsika, G. and Delrot, S., Changes in Apoplastic and Intracellular Leaf Sugars Induced by the Blocking of Export in Vicia faba, Physiol. Plant., 1986, vol. 68, pp. 145–153.CrossRefGoogle Scholar
  67. 67.
    Ziegler, H., Nature of Transported Substances, Encyclopedia of Plant Physiology, New Ser., vol. 1, Transport in Plants, I. Phloem Transport, Zimmermann, M.H. and Milburn, J.A., Eds., Berlin: Springer-Verlag, 1975, pp. 59–138.Google Scholar
  68. 68.
    Flora, L.L. and Madore, M.A., Sucrose and Mannitol Transport in Olive (Olea europaea L.), Planta, 1993, vol. 189, pp. 141–152.CrossRefGoogle Scholar
  69. 69.
    Flora, L.L. and Madore, M.A., Significance of Minor-Vein Anatomy to Carbohydrate Transport, Planta, 1996, vol. 198, pp. 171–178.CrossRefGoogle Scholar
  70. 70.
    Freitag, H. and Stichler, W., A Remarkable New Leaf Type with Unusual Photosynthetic Tissue in a Central Asiatic Genus of Chenopodiaceae, Plant Biol., 2000, vol. 2, pp. 154–160.CrossRefGoogle Scholar
  71. 71.
    Voznesenskaya, E.V., Franceschi, V.R., Kilrats, O., Freitag, H., and Edwards, G.E., Kranz Anatomy Is Not Essential for Terrestrial C4 Plant Photosynthesis, Nature, 2001, vol. 414, pp. 543–546.PubMedCrossRefGoogle Scholar
  72. 72.
    Thorne, J.H., Phloem Unloading of C and N Assimilates in Developing Seeds, Annu. Rev. Plant Physiol., 1985, vol. 36, pp. 317–343.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • Yu. V. Gamalei
    • 1
  1. 1.Komarov Botanical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations