Russian Journal of Plant Physiology

, Volume 53, Issue 6, pp 837–843

Quantitative characterization of nitrogen regulation of OsAMT1;1, OsAMT1;2, and OsAMT2;2 expression in rice seedlings

  • S. M. Li
  • W. M. Shi


The effects of nitrogen forms and supply levels on rice ammonium transporter expression have previously been studied by Northern blot or semiquantitative PCR in a model rice Oryza sativa L., cv. Nipponbare. However, most ammonium transporters (AMT) have low abundance in rice, and it is difficult to accurately analyze their transcript levels. In this study, an analysis of the transcript levels of the OsAMT1;1, OsAMT1;2, and OsAMT2;2 in rice seedlings, cv. Guidan 4 has been performed under various nitrogen conditions, using the technique of real-time quantitative reverse transcription polymerase chain reaction (RT-PCR). The OsAMT1;1 and OsAMT2;2 mRNA levels in nitrogen prestarved plants were induced by supply of NH4+, NH4NO3, and NO3, while OsAMT1;2 mRNA in roots was repressed by the same treatment. Expression of OsAMT1;2 in nitrogen-starved rice shoots was induced steeply when rice plants were exposed to 0.5 mM NH4NO3 or 2 mM NH4+-N whereas both OsAMT1;1 and OsAMT2;2 exhibited only modest changes under same conditions. OsAMT1;1 and OsAMT1;2 were expressed preferentially in roots while OsAMT2;2 was expressed evenly in roots and shoots, suggesting that OsAMT2;2 may play a different physiological role in ammonium uptake. The upregulation effect of NH4NO3 on OsAMT1;1 mRNA in roots is between that of NO3 and NH4+, and its induction effect on OsAMT2;2 mRNA level is higher than that of NO3 or NH4+ in both roots and shoots. These three OsAMTs genes in the Guidan 4 rice cultivar show dissimilar transcriptional regulation by various levels of different nitrogen species, and the nitrogen-regulated expression patterns are different from those of the model rice cv. Nipponbare.

Key words

Oryza sativa nitrogen OsAMT1;1 OsAMT1;2 OsAMT2;2 real-time RT-PCR 



ammonium transporters


polymerase chain reaction


reverse transcription


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ninnemann, O., Jauniaux, J.C., and Frommer, W.B., Identification of a High Affinity NH4+ Transporter from Plants, EMBO J., 1994, vol. 13, pp. 3464–3471.PubMedGoogle Scholar
  2. 2.
    Suenaga, A., Moriya, K., Sonoda, Y., Ikeda, A., von Wirén, N., Hayakawa, T., Yamaguchi, J., and Yamaya, T., Constitutive Expression of a Novel-Type Ammonium Transporter OsAMT2 in Rice Plants, Plant Cell Physiol., 2003, vol. 44, pp. 206–211.PubMedCrossRefGoogle Scholar
  3. 3.
    Sonoda, Y., Ikeda, A., Saiki, S., von Wirén, N., Yamaya, T., and Yamaguchi, J., Distinct Expression and Function of Three Ammonium Transporter Genes (OsAMT1;1–1;3) in Rice, Plant Cell Physiol., 2003, vol. 44, pp. 726–734.PubMedCrossRefGoogle Scholar
  4. 4.
    Gazzarrini, S., Lejay, L., Gojon, A., Ninnemann, O., Frommer, W.B., and von Wirén, N., Three Functional Transporters for Constitutive, Diurnally Regulated, and Starvation-Induced Uptake of Ammonium into Arabidopsis Roots, Plant Cell, 1999, vol. 11, pp. 937–947.PubMedCrossRefGoogle Scholar
  5. 5.
    Sohlenkamp, C., Shelden, M., Howitt, S., and Udvardi, M., Characterization of Arabidopsis AtAMT2, a Novel Ammonium Transporter in Plants, FEBS Lett., 2000, vol. 467, pp. 273–278.PubMedCrossRefGoogle Scholar
  6. 6.
    Sohlenkamp, C., Wood, C.C., Roeb, G.W., and Udvardi, M.K., Characterization of Arabidopsis AtAMT, a High-Affinity Ammonium Transporter of the Plasma Membrane, Plant Physiol., 2002, vol. 130, pp. 1788–1796.PubMedCrossRefGoogle Scholar
  7. 7.
    Loqué, D. and von Wirén, N., Regulatory Levels for the Transport of Ammonium in Plant Roots, J. Exp. Bot., 2004, vol. 55, pp. 1293–1305.PubMedCrossRefGoogle Scholar
  8. 8.
    Lauter, F.R., Ninnemann, O., Bucher, M., Riesmeier, J.W., and Frommer, W.B., Preferential Expression of an Ammonium Transporter and of Two Putative Nitrate Transporters in Root Hairs of Tomato, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 8139–8144.PubMedCrossRefGoogle Scholar
  9. 9.
    Von Wirén, N., Lauter, F.R., Ninnemann, O., Gillissen, B., Liu, P.W., Engels, C., Jost, W., and Frommer, W.B., Differential Regulation of Three Functional Ammonium Transporter Genes by Nitrogen in Root Hairs and by Light in Leaves of Tomato, Plant J., 2000, vol. 21, pp. 167–175.CrossRefGoogle Scholar
  10. 10.
    Becker, D., Stahnke, R., Fendrick, I., Frommer, W.B., Vanderleyden, J., Kaiser, W.M., and Hedrich, R., Expression of the Ammonium Transporter Gene LeAMT1;2 Is Induced in Tomato Roots upon Association with N2-Fixing Bacteria, Planta, 2002, vol. 215, pp. 424–429.PubMedCrossRefGoogle Scholar
  11. 11.
    Salvemini, F., Marini, A.M., Riccio, A., Patriarca, E.J., and Chiurazzi, M., Functional Characterization of an Ammonium Transporter Gene from Lotus japonicus, Gene, 2001, vol. 270, pp. 237–243.PubMedCrossRefGoogle Scholar
  12. 12.
    Simon-Rosin, U., Wood, C., and Udvardi, M.K., Molecular and Cellular Characterization of LjAMT2;1, an Ammonium Transporter from the Model Legume Lotus japonicus, Plant Mol. Biol., 2003, vol. 51, pp. 99–108.PubMedCrossRefGoogle Scholar
  13. 13.
    Pearson, J.N., Finnemann, J., and Schjoerring, J.K., Regulation of the High-Affinity Ammonium Transporter (BnAMT1;2) in the Leaves of Brassica napus by Nitrogen Status, Plant Mol. Biol., 2002, vol. 49, pp. 483–490.PubMedCrossRefGoogle Scholar
  14. 14.
    Kumar, A., Silim, S.N., Okamoto, M., Siddiqi, M.Y., and Glass, A.D.M., Differential Expression of Three Members of the AMT1 Gene Family Encoding Putative High-Affinity NH4+ Transporters in Roots of Oryza sativa Subspecies indica, Plant, Cell Environ., 2003, vol. 26, pp. 907–914.CrossRefGoogle Scholar
  15. 15.
    Rawat, S.R., Silim, S.N., Kronzucker, H.J., Siddiqi, M.Y., and Glass, A.D.M., AtAMT1 Gene Expression and NH4+ Uptake in Roots of Arabidopsis thaliana: Evidence for Regulation by Root Glutamine Levels, Plant J., 1999, vol. 19, pp. 143–152.PubMedCrossRefGoogle Scholar
  16. 16.
    Howitt, S.M. and Udvardi, M.K., Structure, Function and Regulation of Ammonium Transporters in Plants, Biochim. Biophys. Acta, 2000, vol. 1465, pp. 152–170.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhao, S.P., Zhao, X.Q., Li, S.M., and Shi, W.M., Optimization and Application of Real-Time PCR Method for Detecting the Expression Levels of Nitrogen Assimilation-Related Genes in Rice, Fiziol. Rast. (Moscow), 2006, vol. 53, pp. 625–636 (Russ. J. Plant physiol., Engl. Transl., pp. 560–571).Google Scholar
  18. 18.
    Shelden, M.C., Arabidopsis Ammonium Transporters, AtAMT1;1, and AtAMT1;2, Have Different Biochemical Properties and Functional Roles, Plant Soil, 2001, vol. 231, pp. 151–160.CrossRefGoogle Scholar
  19. 19.
    Wei, Q., The Experimental Guide for Molecular Biology, Beijing: China Higher Education Press, Heidelberg: Springer-Verlag, 1999.Google Scholar
  20. 20.
    Kaiser, B.N., Rawat, S.R., Siddiqi, M.Y., Masle, J., and Glass, A.D.M., Functional Analysis of an Arabidopsis T-DNA “Knockout” of the High-Affinity NH4+ Transporter AtAMT1;1, Plant Physiol., 2002, vol. 130, pp. 1263–1275.PubMedCrossRefGoogle Scholar
  21. 21.
    D’Apuzzo, E., Rogato, A., Simon-Rosin, U., Alaoui, H.E., Barbulova, A., Betti, M., Dimou, M., Katinakis, P., Marquez, A., and Chiurazzi, M., Characterization of Three Functional High-Affinity Ammonium Transporters in Lotus japonicus with Differential Transcriptional Regulation and Spatial Expression, Plant Physiol., 2004, vol. 134, pp. 1763–1774.PubMedCrossRefGoogle Scholar
  22. 22.
    Cooper, H.D. and Clarkson, D.T., Cycling of Amino Nitrogen and Other Nutrients between Shoots and Roots in Cereals — a Possible Mechanism Integrating Shoot and Root in the Regulation of Nutrient Uptake, J. Exp. Bot., 1989, vol. 40, pp. 753–762.Google Scholar
  23. 23.
    Gansel, X., Munos, S., Tillard, P., and Gojon, A., Differential Regulation of NO3 and NH4+ Transporter Genes AtNrt2,1 and AtAMT1,1 in Arabidopsis: Relation with Long-Distance and Local Controls by N Status of the Plant, Plant J., 2001, vol. 26, pp. 143–155.PubMedCrossRefGoogle Scholar
  24. 24.
    Wang, Y.H., Garvin, D.F., and Kochian, L.V., Nitrate-Induced Genes in Tomato Roots. Array Analysis Reveals Novel Genes That May Play a Role in Nitrogen Nutrition, Plant Physiol., 2001, vol. 127, pp. 345–359.PubMedCrossRefGoogle Scholar
  25. 25.
    Sonoda, Y., Ikeda, A., Saiki, S., Yamaya, T., and Yamaguchi, J., Feedback Regulation of the Ammonium Transporter Gene Family AMT1 by Glutamine in Rice, Plant Cell Physiol., 2003, vol. 44, pp. 1396–1402.PubMedCrossRefGoogle Scholar
  26. 26.
    Von Wirén, N., Gazzarrini, S., Gojin, A., and Frommer, W.B., The Molecular Physiology of Ammonium Uptake and Retrieval, Curr. Opin. Plant Biol., 2000, vol. 3, pp. 254–261.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2006

Authors and Affiliations

  • S. M. Li
    • 1
    • 2
  • W. M. Shi
    • 1
  1. 1.State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
  2. 2.Graduate School of Chinese Academy of SciencesBeijingChina

Personalised recommendations