Russian Journal of Plant Physiology

, Volume 53, Issue 4, pp 456–462 | Cite as

Peptide conjugates of benzene and toluene metabolites in English ryegrass

  • D. I. Chrikishvili
  • G. V. Zaalishvili
  • T. I. Mitaishvili
  • E. P. Lomidze


Biotransformation of [1-6-14C]benzene and [1-14C]toluene in English ryegrass (Lolium perenne L.) seedlings was investigated. Vapors of these compounds were absorbed by the leaves of this plant. Benzene and toluene were oxidized, forming phenol and benzoic acid, respectively. A portion of phenol and benzoic acid was bound by low-molecular-weight peptides forming conjugates. A qualitative amino acid composition of the peptides involved in the conjugation was determined. After removing plants from the atmosphere containing [1-6-14C]benzene and [1-14C]toluene, the radioactivity of the conjugates gradually decreased. This process was accompanied by the evolution of 14CO2, indicating the breakdown of these conjugates. Radioactive compounds thus formed were oxidized, yielding carbon dioxide. A portion of phenol and benzoic acid, along with peptide conjugation, was subjected to further oxidative transformations up to disruption of the aromatic ring. By this pathway, nonvolatile carboxylic acids, such as muconic, fumaric, succinic, malic, malonic, glycolic, and glyoxylic, were formed. Using electron microscopy, a damaging effect of benzene on the cell ultrastructure of English ryegrass leaves was shown, and this toxic effect depended on the benzene concentration.

Key words

Lolium perenne benzene toluene peptide conjugation xenobiotic ultrastructure 





melting temperature


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Salt, D.E., Smoth, R.D., and Raskin, I., Phytoremediation, Annu. Rev. Plant Physiol. Plant. Mol. Biol., 1998, vol. 49, pp. 643–668.PubMedCrossRefGoogle Scholar
  2. 2.
    Korte, F., Kvesitadze, G.I., Ugrekhelidze, D.Sh., Khatisashvili, G., Buadze, O.A., Zaalishvili, G., and Coulston, F., Organic Toxicants and Plants, Ecotoxicol. Environ. Saf., 2000, vol. 47, pp. 1–26.PubMedCrossRefGoogle Scholar
  3. 3.
    Ferro, A., Kennedy, J., Doucette, W., Nelson, N., Jauregu, G., McFarland, B., and Bugbee, B., Fate of Benzene in Soils Planted with Alfalfa: Uptake, Volatilization, and Degradation, Phytoremediation of Soil and Water Contaminants, Washington: Am. Chem. Soc., 1997, pp. 223–237.Google Scholar
  4. 4.
    Burken, J.G., Ross, C., Harrison, L.M., and Marsh, A., Benzene Toxity and Removal in Laboratory Phytoremediation Studies, Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2001, vol. 5, pp. 161–171.CrossRefGoogle Scholar
  5. 5.
    Durmishidze, S.V. and Ugrekhelidze, D.Sh., Benzene Assimilation by Higher Plants, Izv. Akad. Nauk Gruz. SSR, 1967, vol. 45, pp. 613–616.Google Scholar
  6. 6.
    Durmishidze, S.V., Ugrekhelidze, D.Sh., and Dzhikiya, A.N., Toluene Assimilation and Transformation by Higher Plants, Prikl. Biokhim. Mikrobiol., 1974, vol. 10, pp. 673–678.Google Scholar
  7. 7.
    Ugrekhelidze, D.Sh., Korte, F., and Kvesitadze, G.I., Uptake and Transformation of Benzene and Toluene by Plant Leaves, Ecotoxicol. Environ. Saf., 1997, vol. 37, pp. 24–29.PubMedCrossRefGoogle Scholar
  8. 8.
    Buadze, O.A., Sadunishvili, T., and Kvesitadze, G.I., The Effect of 1,2-Benzanthracene and 3,4-Benzopyrene on the Ultrastructure of Maize Cells, Int. Biodeter. Biodegr., 1998, vol. 44, pp. 49–54.Google Scholar
  9. 9.
    Ugrekhelidze, D.Sh., Chrikishvili, D.I., and Mitaishvili, T.I., Benzene Hydroxylation in Plants, Izv. Akad. Nauk Gruz. SSR, 1977, vol. 88, pp. 441–444.Google Scholar
  10. 10.
    Mitaishvili, T.I., Durmishidze, S.V., Chrikishvili, D.I., and Ugrekhelidze, D.Sh., Oxidative Change of Benzoic Acid in Plants, Dokl. Akad. Nauk SSSR, 1979, vol. 247, pp. 247–251.Google Scholar
  11. 11.
    Rapkin, E., Sample Preparation for Liquid Scintillation Counting, Part 2, Solvents and Scintillators, Plaisiz: Intertechnique, 1970.Google Scholar
  12. 12.
    Safonov, V.I. and Safonova, M.P., Mikroelektroforez belkov v poliakrilamidnom gele (metodicheskoe rukovodstvo) (Microelectrophoresis of Proteins in Polyacrylamide Gel, Methodological Recommendations), Moscow: Nauka, 1968.Google Scholar
  13. 13.
    Geyer, G., Ultrahistochemie: Histochemische Arbeitsvorschriften für die Elektronenmicroskopie, Jena: Gustav Fisher, 1973.Google Scholar
  14. 14.
    Pridham, I.B., The Phenol Glucosylation Reaction in the Plant Kingdom, Phytochemistry, 1964, vol. 3, pp. 493–497.CrossRefGoogle Scholar
  15. 15.
    Tabata, M., Ikeda, F., Haraoka, N., and Konoshima, M., Glucosylation of Phenolic Compounds by Datura innoxia Suspension Cultures, Phytochemistry, 1976, vol. 15, pp. 1225–1229.CrossRefGoogle Scholar
  16. 16.
    Klambt, H.D., Conversion in Plants of Benzoic Acid to Salicylic Acid and Its β-D-Glucoside, Nature, 1962, vol. 196, pp. 491–495.CrossRefGoogle Scholar
  17. 17.
    Cooper-Driver, G., Corner-Zamodits, I.I., and Swain, T., The Metabolic Fate of Hydroxybenzoic Acids in Plants, Z. Naturforsch., 1972, vol. 27, pp. 947–956.Google Scholar
  18. 18.
    Mayer, A.M. and Harel, L., Polyphenoloxidases in Plants, Phytochemistry, 1979, vol. 18, pp. 193–215.CrossRefGoogle Scholar
  19. 19.
    Ugrekhelidze, D.Sh., Metabolizm ekzogennykh alkanov i aromaticheskikh uglevodorodov v rasteniyakh (Metabolism of Exogenous Alkanes and Aromatic Carbohydrates in Plants), Tbilisi: Metsniereba, 1976.Google Scholar
  20. 20.
    El-Basyonni, S.Z., Chen, D., Ibrahim, R.K., Heish, A.C., and Towers, G.H., The Biosynthesis of Hydroxybenzoic Acids in Higher Plants, Phytochemistry, 1964, vol. 3, pp. 485–488.CrossRefGoogle Scholar
  21. 21.
    Chrikishvili, D.I., Ugrekhelidze, D.Sh., and Mitaishvili, T.I., Products of Phenol Conjugation in Maize, Soobshch. Akad. Nauk Gruz. SSR, 1977, vol. 88, pp. 173–176.Google Scholar
  22. 22.
    Mitaishvili, E.I., Durmishidze, S.V., Ugrekhelidze, D.Sh., and Chrikishvili, D.I., Conjugation of Benzoic Acid with Peptides in Plants, Dokl. Akad. Nauk SSSR, 1978, vol. 244, pp. 457–460.Google Scholar
  23. 23.
    Durmishidze, S.V., Beriashvili, T.V., Chrikishvili, D.I., Maisuradze, Ts.M., and Gugunishvili, G.Sh., Detoxication of Aliphatic Alcohol, Aldehydes, and Acids in Ryegrass, Prikl. Biokhim. Mikrobiol., 1985, vol. 21, pp. 246–251.Google Scholar
  24. 24.
    Durmishidze, S.V., Chrikishvili, D.I., and Devdariani, T.V., Conjugation of 3,4-Benzopyrene and 1,2-Benzatracene with Plant Peptides, Dokl. Akad. Nauk SSSR, 1992, vol. 325, pp. 164–166.Google Scholar
  25. 25.
    Ugrekhelidze, D.Sh., Kvesitadze, G.I., Arziani, B.A., Mithaishvili, T.I., and Phiriashvili, V., Detoxication of Phenol in Annual Plant Seedlings, Ecotoxicol. Environ. Saf., 1999, vol. 42, pp. 119–124.PubMedCrossRefGoogle Scholar
  26. 26.
    Schmitt, R. and Sandermann, H.Ir., Specific Localization of β-D-Glucoside Conjugates of 2,4-Dichlorophenoxyacetic Acid in Soybean Vacuoles, Z. Naturforch., 1982, vol. 37, pp. 772–777.Google Scholar
  27. 27.
    Sandermann, H., Higher Plant Metabolism of Xenobiotics: The “Green Leaves” Concept, Pharmacogenetics, 1994, vol. 4, pp. 225–241.PubMedGoogle Scholar
  28. 28.
    Zaalishvili, G., Sadunishvili, T., Scalla, R., Laurent, F., and Kvesitadze, G., Electron Microscopic Investigation of Nitrobenzene Distribution and Effect on Plant Root Tip Cells Ultrastructure, Ecotoxicol. Environ. Saf., 2002, vol. 52, pp. 190–197.PubMedCrossRefGoogle Scholar
  29. 29.
    Khatisashvili, G., Gordeziani, M., Kvesitadse, G., and Korte, F., Plant Monooxygenases: Participation in Xenobiotic Oxidation, Ecotoxicol. Environ. Saf., 1997, vol. 36, pp. 118–122.PubMedCrossRefGoogle Scholar
  30. 30.
    Kvesitadze, G., Cordeziani, M., Khatisashvili, G., Sadunishvili, T., and Ramsden, J., Some Aspects of the Enzymatic Basis of Phytoremediation, J. Biol. Phys. Chem., 2001, vol. 1, pp. 49–57.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2006

Authors and Affiliations

  • D. I. Chrikishvili
    • 1
  • G. V. Zaalishvili
    • 1
  • T. I. Mitaishvili
    • 2
  • E. P. Lomidze
    • 1
  1. 1.Durmishidze Institute of Biochemistry and BiotechnologyAcademy of Sciences of GeorgiaTbilisiGeorgia
  2. 2.State Agricultural University of GeorgiaTbilisiGeorgia

Personalised recommendations