Herald of the Russian Academy of Sciences

, Volume 88, Issue 5, pp 401–404 | Cite as

Genomic Selection and Prediction of Offspring Quality in Animals

  • A. F. YakovlevEmail author
From the Researcher’s Notebook


Genomic selection is a very new scientific area, which has quickly become the world’s most advanced methodology to select farm animal, especially cattle, breeding schemes. The high efficiency of genomic selection is determined by the early identification of genetically elite animals using information about the status of single-nucleotide polymorphisms of genome DNA, which makes it possible to calculate breeding value indexes, embracing nearly all quantitative trait loci. A high accuracy of selection at a young age helps decrease generation intervals and accelerate significantly genetic progress in animal husbandry.


genomic selection animal husbandry agriculture cattle breeding 



  1. 1.
    A. V. Zimin, A. L. Delcher, L. Florea, et al., “A whole-genome assembly of the domestic cow, Bos Taurus,” Genome Biol. 10 (4), 1–10 (2009).CrossRefGoogle Scholar
  2. 2.
    V. M. Kuznetsov, “Wright’s F-statistics: Estimation and interpretation,” Probl. Biol. Produktiv. Zhivotn. 4, 80–104 (2014).Google Scholar
  3. 3.
    V. M. Kuznetsov, Research Basics in Animal Husbandry (Zonal’nyi NIISKh Severo-Vostoka, Kirov, 2006) [in Russian].Google Scholar
  4. 4.
    T. H. E. Meuwissen, B. J. Hayes, and M. E. Goddard, “Prediction of total genetic value using genome-wide dense marker maps,” Genetics 157 (4), 1819–1829 (2001).Google Scholar
  5. 5.
    M. E. Goddard and B. J. Hayes, “Genomic Selection,” J. Anim. Breed. Genet. 124 (6), 323–330 (2007).CrossRefGoogle Scholar
  6. 6.
    M. G. Smaragdov, “Genomic selection of milk cattle: The practical application over five years,” Russ. J. Genet. 49 (11), 1089–1097 (2013).CrossRefGoogle Scholar
  7. 7.
    B. J. Hayes, P. J. Bowman, A. J. Chamberlain, and M. E. Goddard, “Genomic selection in dairy cattle: Progress and challenges,” J. Dairy Sci. 92 (2), 433–443 (2009).CrossRefGoogle Scholar
  8. 8.
    M. Pszczola, T. Strabel, H. A. Mulder, and M. P. Calus, “Reliability of direct genomic values for animals with different relationships within and to the reference population,” J. Dairy Sci. 95 (1), 389–400 (2012).CrossRefGoogle Scholar
  9. 9.
    R. Dassonneville, R. F. Brøndum, T. Druet, and S. Fritz, “Effect of imputing markers from a low-density chip on the reliability of genomic breeding values in Holstein populations,” J. Dairy Sci. 94 (7), 3679–3686 (2011).CrossRefGoogle Scholar
  10. 10.
    A. F. Yakovlev and N. V. Dement’eva, “Genomic data used in poultry selection,” Vavilov. Zh. Genet. Selek., No. 7, 770–777 (2017).Google Scholar
  11. 11.
    K. F. Stock and R. Reents, “Genomic selection: Status in different species and challenges for breeding,” Reproduction Domestic Animals 48 (S1), 2–10 (2013).CrossRefGoogle Scholar
  12. 12.
    R. Zanella, “Genomic tools and animal health,” Vet. Sci. 3 (3), 1–8 (2016).Google Scholar
  13. 13.
    E. I. Saksa and O. E. Barsukova, “Selective and genetic characteristic of highly productive Holstein Black-and-White cattle in Leningrad oblast,” Mol. Myas. Skotovodstvo, No. 6, 8–12 (2013).Google Scholar
  14. 14.
    J. E. Pryce and H. D. Daetwyler, “Designing dairy cattle breeding schemes under genomic selection: A review of international research,” Anim. Prod. Sci. 52, 107–114 (2012).CrossRefGoogle Scholar
  15. 15.
    J. E. Pryce and B. Hayes, “A review of how dairy farmers can use and profit from genomic technologies,” Anim. Prod. Sci. 52, 180–184 (2012).CrossRefGoogle Scholar
  16. 16.
    M. Dongyuan and Liu Feng, “Genome editing and its applications in model organisms,” Genomics, Proteomics Bioinformatics 13 (6), 336–344 (2015).CrossRefGoogle Scholar
  17. 17.
    L. Y. Chang, S. Toghiani, A. Ling, et al., “High density marker panels, SNPs prioritizing and accuracy of genomic selection,” BMC Genet. 19 (1), 1–10 (2018).Google Scholar
  18. 18.
    A. A. Sermyagin, E. N. Naryshkina, E. A. Gladyr, et al., “Overview of fertility traits in Russian Holstein bulls using genome-wide association,” Reproduction, Fertility Development 29 (1), 174 (2017).CrossRefGoogle Scholar
  19. 19.
    A. A. Sermyagin, E. A. Gladyr’, S. N. Kharitonov, et al., “Genome-wide analysis of association with productive and reproductive traits in dairy cattle in the Russian Holstein population,” Sel’skokhoz. Biol., No. 2, 182–193 (2016).Google Scholar
  20. 20.
    M G. Smaragdov, “Genomic selection as a possible accelerator of traditional selection,” Russ. J. Genet. 45 (6), 633–636 (2009).Google Scholar
  21. 21.
    M. G. Smaragdov, E. I. Saksa, A. A. Kudinov, et al., “Genome-wide analysis of across herd Fst heterogeneity in holsteinized cattle,” Russ. J. Genet. 52 (2), 173–179 (2016).CrossRefGoogle Scholar
  22. 22.
    K. V. Plemyashov, “Genomic selection as future animal husbandry,” Mol. Skotovodstvo, No. 5, 2–4 (2014).Google Scholar
  23. 23.
    I. V. Rukin, D. S. Gruzdev, E. S. Khrameeva, et al., “Genome-wide association research into the domestic Holstein and Black-and-White bull herd,” Zootekhniya, No. 12, 2–5 (2013).Google Scholar
  24. 24.
    N. S. Yudin and M. I. Voevoda, “Molecular genetic markers of economically important traits in dairy cattle,” Russ. J. Genet. 51 (5), 506–517 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.All-Russia Research Institute of Genetics and Farm Animal BreedingSt. PetersburgRussia

Personalised recommendations