Advertisement

Herald of the Russian Academy of Sciences

, Volume 86, Issue 6, pp 426–432 | Cite as

Probing quantum systems from the inside while producing the world’s shortest optical pulses

  • Paul Corkum
Reports by the Laureates of the 2015 Lomonosov Grand Gold Medal of the Russian Academy of Sciences

Abstract

In 1964, Professor L.V. Keldysh, with whom I share winning the Lomonosov Gold Medal, published what was to become a very influential paper. In his paper, he developed the theory of multiphoton ionization for atoms and the creation of electron-hole pairs for solids. Fifty years later, we generate the world’s shortest light pulses using electron wave packets that are extracted from rare gas atoms by an intense infrared pulse much as Professor Keldysh described. The ultrashort bursts of XUV radiation from many atoms add coherently to produce intense pulses as short as 65 attoseconds—the current world record. Similar highly nonlinear processes occur in other atoms, molecules and solids. In addition to its importance as a new source of soft X-ray radiation and ultrashort pulses, the radiation generated from ionizing material encodes information on the quantum system from which it was made. By analyzing the XUV radiation, not only can we image molecular orbitals but also determine the band structure of solids.

Keywords

tunneling multiphoton ionization attosecondpulses re-collisions electronwavepacket 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Zh. Eksp. Teor. Fiz. 20, 1307–1314 (1965).Google Scholar
  2. 2.
    P. B. Corkum, N. H. Burnett, and F. Brunel, “Above threshold ionization in the long wavelength limit,” Phys. Rev. Lett. 62, 1259–1262 (1989).CrossRefGoogle Scholar
  3. 3.
    P. B. Corkum, “A plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71 (13), 1994–1997 (1993).CrossRefGoogle Scholar
  4. 4.
    J. P. Morrison, C. J. Rennick, J. S. Keller, and E. R. Grant, “Evolution from a molecular Rydberg gas to an ultracold plasma in a seeded supersonic expansion of NO,” Phys. Rev. Lett. 101, 205005 (2008).CrossRefGoogle Scholar
  5. 5.
    N. H. Burnett and P. B. Corkum, “Cold plasma production for recombination XUV lasers by optical field induced ionization,” J. Opt. Soc. Am. B 6, 1195–1199 (1989).CrossRefGoogle Scholar
  6. 6.
    Y. Liu, Y. Brelet, G. Point, A. Houard, and A. Mysyrowicz, “Self-seeded lasing in ionized air pumped by 800 nm femtosecond laser pulses,” Optics Express 21, 22791–22798 (2013).CrossRefGoogle Scholar
  7. 7.
    H. Zhang, C. Jing, J. Yao, et al., “Rotational coherence encoded in an ‘air-laser’ spectrum of nitrogen molecular ions in an intense laser field,” Phys. Rev. X 3, 041009 (2013).Google Scholar
  8. 8.
    T. Zuo, A. D. Bandrauk, and P. B. Corkum, “Laser induced electron diffraction: A new tool for probing ultrafast molecular dynamics,” Chem. Phys. Lett. 259, 313–320 (1996).CrossRefGoogle Scholar
  9. 9.
    J. Itatani, J. Levesque, D. Zeidler, et al., “Tomographic imaging of molecular orbitals,” Nature 432, 867–871 (2004).CrossRefGoogle Scholar
  10. 10.
    T. Popmintchev, M.-C. Chen, D. Popmintchev, et al., “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).CrossRefGoogle Scholar
  11. 11.
    P. B. Corkum, N. H. Burnett, and M. Y. Ivanov, “Subfemtosecond pulses,” Opt. Lett. 19 (22), 1870–1872 (1994).CrossRefGoogle Scholar
  12. 12.
    M. Hentschel, R. Kienberger, C. Spielmann, et al., “Attosecond metrology,” Nature 414, 509–513 (2001).CrossRefGoogle Scholar
  13. 13.
    C. Smeenk, L. Arissian, B. Zhou, et al., “Partitioning of the linear photon momentum in multiphoton ionization,” Phys. Rev. Lett. 106, 193002 (2011).CrossRefGoogle Scholar
  14. 14.
    L. Arissian, C. Smeenk, F. Turner, et al., “Direct test of laser tunneling with electron momentum imaging,” Phys. Rev. Lett. 105, 133002 (2010).CrossRefGoogle Scholar
  15. 15.
    M. Meckel, D. Comtois, D. Zeidler, et al., “Laser induced electron tunneling and diffraction,” Science 320, 1478–1482 (2008).CrossRefGoogle Scholar
  16. 16.
    J. L. Kraus, K. J. Schafer, and K. C. Kulander, “Highorder harmonic generation from atoms and ions in the high intensity regime,” Phys. Rev. Lett. 68, 3535–3558 (1992).CrossRefGoogle Scholar
  17. 17.
    N. Dudovich, O. Smirnova, J. Levesque, et al., “Measuring and controlling the birth of attosecond XUV pulses,” Nature Physics 2, 781–786 (2006).CrossRefGoogle Scholar
  18. 18.
    F. Brunel, “Harmonic generation due to plasma effects in a gas undergoing multiphoton ionization in the highintensity limit,” J. Opt. Soc. Am. 7, 521–526 (1990).CrossRefGoogle Scholar
  19. 19.
    M. Gertsvolf, H. Jean-Ruel, P. P. Rajeev, et al., “Orientation-dependent multiphoton ionization in wide band gap crystals,” Phys. Rev. Lett. 101, 243001 (2008).CrossRefGoogle Scholar
  20. 20.
    D. Grojo, M. Gertsvolf, S. Lei, et al., “Exciton-seeded multiphoton ionization in bulk SiO2,” Phys. Rev. B 81, 212301 (2010).CrossRefGoogle Scholar
  21. 21.
    M. Gertsvolf, M. Spanner, D. M. Rayner, and P. B. Corkum, “Demonstration of attosecond ionization dynamics inside transparent solids,” J. Phys. B 43, 131002 (2010).CrossRefGoogle Scholar
  22. 22.
    S. Ghimire, A. D. DiChiara, E. Sistrunk, et al., “Observation of high-order harmonic generation in a bulk crystal,” Nature Physics 7, 138–141 (2011).CrossRefGoogle Scholar
  23. 23.
    T. T. Luu, “Extreme ultraviolet high harmonic spectroscopy of solids,” Nature 521, 498–502 (2015).CrossRefGoogle Scholar
  24. 24.
    G. Vampa, C. R. McDonald, G. Orlando, et al., “Theoretical analysis of high-harmonic generation in solids,” Phys. Rev. Lett. 113, 073901 (2014).CrossRefGoogle Scholar
  25. 25.
    G. Vampa, C. R. McDonald, G. Orlando, et al., “Semiclassical analysis of high harmonic generation in bulk crystals,” Phys. Rev. B 91, 064302 (2015).CrossRefGoogle Scholar
  26. 26.
    G. Vampa, T. J. Hammond, N. Thiré, et al., “Linking high harmonics from gases and solids,” Nature 522, 462–464 (2015).CrossRefGoogle Scholar
  27. 27.
    G. Vampa, T. J. Hammond, N. Thiré, et al., “Generation of high harmonics from silicon”, Preprint No. arXiv:1605.06345arXiv (2016).Google Scholar
  28. 28.
    G. Vampa, T. J. Hammond, N. Thiré, et al., “All-optical reconstruction of crystal band structure,” Phys. Rev. Lett. 115, 193603 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Joint Attosecond Science LaboratoryUniversity of Ottawa and the National Research Council of CanadaOttawaCanada

Personalised recommendations