Herald of the Russian Academy of Sciences

, Volume 84, Issue 4, pp 252–264 | Cite as

Structural nanotechnology of nucleic acids: Designing “Liquid” and “Rigid” DNA nanoconstructions

  • Yuri Mikhailovich Yevdokimov
  • Viktor Ivanovich Salyanov
  • Eleonora Vladimirovna Shtykova
  • Efim Iosifovich Katz
  • Nikolai Grigor’evich Khlebtsov
  • Sergei Gennad’evich Skuridin
On the Rostrum of the RAS Presidium

Abstract

Different options of spatial nanoobjects based on double-stranded DNA molecules are considered: physicochemical and nanotechnological, which help create preconditions for the development of a new trend in structural nanotechnology. The findings can be used in medicine since the designed nanoobjects are capable of delivering pharmaceuticals directly to affected cells.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. M. Evdokimov, V. I. Salyanov, E. I. Katz, and C. G. Skuridin, “Structural nucleic acid nanotechnology: Liquid-crystalline approach,” Biophysics 58(6), 775 (2013).CrossRefGoogle Scholar
  2. 2.
    N. C. Seeman, “An overview of structural DNA nanotechnology,” J. Mol. Biotechnol., No. 3 (2007).Google Scholar
  3. 3.
    Yu. M. Yevdokimov, V. I. Salyanov, S. V. Semenov, and S. G. Skuridin, DNA Liquid-Crystalline Dispersions and Nanoconstructions (CRC Press, New York, 2011).CrossRefGoogle Scholar
  4. 4.
    Yu. M. Yevdokimov, V. I. Salyanov, S. G. Skuridin, et al., The CD Spectra of Double-Stranded DNA Liquid-Crystalline Dispersions (Nova Science, New York, 2011).CrossRefGoogle Scholar
  5. 5.
    A. Leforestier and F. Livolant, “Supramolecular ordering of DNA in the cholesteric liquid crystalline phase,” Biophys. J., No. 1 (1993).Google Scholar
  6. 6.
    A. A. Tager, Physical Chemistry of Polymers, 3rd ed. (Khimiya, Moscow, 1978) [in Russian].Google Scholar
  7. 7.
    Yu. M. Yevdokimov, V. I. Salyanov, F. Spener, and M. Palumbo, “Adjustable’ cross-linking’ of neighboring DNA molecules in liquid-crystalline dispersions through (daunomycin-copper) polymeric chelate complex,” Int. J. Biol. Macromol., No. 4 (1996).Google Scholar
  8. 8.
    Yu. D. Nechipurenko, V. F. Ryabokon’, S. V. Semenov, and Yu. M. Evdokimov, “Thermodynamic models for the formation of bridges between nucleic acid molecules in liquid crystals,” Biophysics 48(4), 594 (2003).Google Scholar
  9. 9.
    Yu. M. Yevdokimov, S. G. Skuridin, Yu. D. Nechipurenko, et al., “Nanoconstructions based on doublestranded nucleic acids,” Int. J. Biol. Macromol., Nos. 1–2 (2005).Google Scholar
  10. 10.
    Y. H. Qi, Q. Y. Zhang, and L. Xu, “Correlation analysis of the structure and stability constants of gadolinium(III) complexes,” J. Chem. Inf. Comput. Sci., No. 6 (2002).Google Scholar
  11. 11.
    E. V. Shtykova, V. V. Volkov, V. I. Salyanov, and Yu.M. Yevdokimov, “Structural modeling of DNA-gadolinium complexes from SAXS data,” Eur. Biophys. J., No. 9 (2010).Google Scholar
  12. 12.
    T. Hegmann, H. Qi, and V. M. Marx, “Nanoparticles in liquid crystals: Synthesis, self-assembly, defect formation, and potential applications,” J. Inorg. Organomet. Polym. Mater., No. 3 (2007).Google Scholar
  13. 13.
    D. Voloschenko, O. P. Pishnyak, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effect of director distortions on morphologies of phase separation in liquid crystals,” Phys. Rev., Ser. E, No. 6 (2002).Google Scholar
  14. 14.
    L. Dykman, V. Bogatyrev, S. Shchegolev, and N. Khlebtsov, Gold Nanoparticles: Synthesis, Properties, Biomedical Use (Nauka, Moscow, 2008) [in Russian].Google Scholar
  15. 15.
    C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature, No. 6592 (1996).Google Scholar
  16. 16.
    A. Kumar, M. Pattarkine, M. Bhadbhade, et al., “Linear superclusters of colloidal gold particles by electrostatic assembly on DNA templates,” Adv. Mater., No. 5 (2001).Google Scholar
  17. 17.
    S. G. Skuridin, V. A. Dubinskaya, V. M. Rudoi, et al., “Effect of gold nanoparticles on DNA package in model systems,” Dokl. Biochem. Biophys. 432, 141 (2010).CrossRefGoogle Scholar
  18. 18.
    S. T. Zakhidov, S. M. Pavlyuchenkova, A. V. Samoilov, et al., “Bovine sperm chromatin is not protected from the effects of ultrasmall gold nanoparticles,” Biol. Bull. (Moscow) 40(6), 439 (2013).CrossRefGoogle Scholar
  19. 19.
    J. J. Storhoff, A. A. Lazarides, R. C. Mucic, et al. “What controls the optical properties of DNA-linked gold nanoparticle assemblies?,” J. Am. Chem. Soc., No. 19 (2000).Google Scholar
  20. 20.
    N. G. Khlebtsov, A. G. Melnikov, L. A. Dykman, and V. A. Bogatyrev, “Optical properties and biomedical applications of nanostructures based on gold and silver bio-conjugates,” Photopolarimetry in Remote Sensing. NATO Science Series, II. Mathematics, Physics, and Chemistry 161, 265 (2005).CrossRefGoogle Scholar
  21. 21.
    N. G. Khlebtsov, “T-matrix method in plasmonics: An overview,” J. Quant. Spectrosc. Radiat. Transfer 123, 184 (2013).CrossRefGoogle Scholar
  22. 22.
    K. C. Grabar, P. C. Smith, M. D. Musick, et al., “Kinetic control of interparticle spacing in Au colloid-based surfaces: Rational nanometer-scale architecture,” J. Am. Chem. Soc., No. 5 (1996).Google Scholar
  23. 23.
    I. M. Lifshitz and V. V. Slyozov, “The kinetics of precipitation from supersaturated solid solutions,” J. Phys. Chem. Solids, Nos. 1–2 (1961).Google Scholar
  24. 24.
    Yu. M. Evdokimov, V. I. Salyanov, E. I. Katz, and S. G. Skuridin, “Clusters of gold nanoparticles in quasi-nematic layers of liquid-crystalline dispersion particles of double-stranded nucleic acids,” Acta Naturae, No. 4 (2012).Google Scholar
  25. 25.
    Yu. M. Yevdokimov, S. G. Skuridin, V. I. Salyanov, et al., “A dual effect of Au-nanoparticles on nucleic acid cholesteric liquid-crystalline particles,” J. Biomater. Nanobiotechnol. 2(4) (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • Yuri Mikhailovich Yevdokimov
    • 1
  • Viktor Ivanovich Salyanov
    • 2
  • Eleonora Vladimirovna Shtykova
    • 3
  • Efim Iosifovich Katz
    • 4
  • Nikolai Grigor’evich Khlebtsov
    • 5
  • Sergei Gennad’evich Skuridin
    • 2
  1. 1.Laboratory of Condensed State of Nucleic Acids, the Engelhardt Institute of Molecular Biology (IMB)Russian Academy of Sciences (RAS)MoscowRussia
  2. 2.RAS IMBMoscowRussia
  3. 3.Shubnikov Institute of CrystallographyRASMoscowRussia
  4. 4.Landau Institute of Theoretical PhysicsRASMoscowRussia
  5. 5.Laboratory of Nanobiotechnology at the Institute of Biochemistry and Physiology of Plants and Microorganisms (IBPPM)RASMoscowRussia

Personalised recommendations