Advertisement

Herald of the Russian Academy of Sciences

, Volume 80, Issue 3, pp 237–242 | Cite as

The brain and memory: The biology of traces of time past

  • K. V. Anokhin
Scientific Session of the General Meeting of the Russian Academy of Sciences

Keywords

Memory Formation Memory Consolidation Secondary Messenger Memory Research High Brain Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Ginsburg and E. Jablonka, “The Transition to Experiencing: The Evolution of Associative Learning Based on Feeling,” Biol. Theory 2, 231 (2007).CrossRefGoogle Scholar
  2. 2.
    L. Rensing, M. Koch, and A. Becker, “A Comparative Approach to the Principal Mechanisms of Different Memory Systems,” Naturwissenschaften 96, 1373 (2009).CrossRefGoogle Scholar
  3. 3.
    M. Halbwachs, Les Cadres sociaux de la mémoire (Presses Univ. France, Paris, 1925; Novoe Izd., Moscow, 2007).Google Scholar
  4. 4.
    G. Edelman, Remembered Present: A Biological Theory of Consciousness (Basic Books, New York, 1989).Google Scholar
  5. 5.
    E. Tulving, “Episodic Memory: From Mind to Brain,” Annu. Rev. Psychol. 53 (2002).Google Scholar
  6. 6.
    S. Rose, The Making of Memory: From Molecules to Mind (Bantam, London, 1992; Mir, Moscow, 1995).Google Scholar
  7. 7.
    R. Descartes, Passions of the Soul (London, 1650), pp. 34, 35.Google Scholar
  8. 8.
    I. Hacking, Rewriting the Soul: Multiple Personality and the Science of Memory (Princeton Univ. Press, Princeton, 1995).Google Scholar
  9. 9.
    E. R. Kandel, “The Molecular Biology of Memory Storage: A Dialogue between Genes and Synapses,” Science 294, 1030 (2001).CrossRefGoogle Scholar
  10. 10.
    E. Glassman, “The Biochemistry of Learning: An Evaluation of the Role of RNA and Protei,” Annu. Rev. Biochem. 38, 605 (1969).CrossRefGoogle Scholar
  11. 11.
    N. E. Maleeva, G. L. Ivolgina, K. V. Anokhin, et al., “Analysis of the c-fos Protooncogene Expression in the Rat Cortex during Learning,” Genetika 25, 1119 (1989).Google Scholar
  12. 12.
    W. Tischmeyer, L. Kaczmarek, R. Strauss, et al., “Accumulation of c-fos mRNA in Rat Hippocampus after Acquisition of a Brightness Discrimination,” Behav. Neural. Biol. 54, 165 (1990).CrossRefGoogle Scholar
  13. 13.
    C. M. Alberini, “Transcription Factors in Long-Term Memory and Synaptic Plasticity,” Physiol. Rev. 89, 121 (2009).CrossRefGoogle Scholar
  14. 14.
    S. W. Flavell and M. E. Greenberg, “Signaling Mechanisms Linking Neuronal Activity to Gene Expression and Plasticity of the Nervous System,” Annu. Rev. Neurosci. 31, 563 (2008).CrossRefGoogle Scholar
  15. 15.
    A. Pfenning, R. Schwartz, and A. Barth, “A Comparative Genomics Approach to Identifying the Plasticity Transcriptome,” BMC Neurosci. 8, 20 (2007).CrossRefGoogle Scholar
  16. 16.
    K. V. Anokhin, “Molecular Scenarios of Long-Term Memory Consolidation,” Zh. Vyssh. Nervn. Deyat. im. Pavlova 47, 262 (1997).Google Scholar
  17. 17.
    E. D. Holt, Animal Drive and the Learning Process (Holt, New York, 1931), p. 7.Google Scholar
  18. 18.
    K. V. Anokhin and K. V. Sudakov, “Systems Organization of Behavior: Novelty as the Leading Factor of Expression of Early Genes in the Brain during Learning,” Usp. Fiziol. Nauk 24, 53 (1993).Google Scholar
  19. 19.
    A. J. Silva, Y. Zhou, T. Rogerson, et al., “Molecular and Cellular Approaches to Memory Allocation in Neural Circuits,” Science 326, 391 (2009).CrossRefGoogle Scholar
  20. 20.
    T. D. Albright, T. M. Jessell, E. R. Kandel, and M. I. Posner, “Neural Science: A Century of Progress and the Mysteries That Remain,” Cell 100, 1 (2000).CrossRefGoogle Scholar
  21. 21.
    O. O. Litvin and K. V. Anokhin, “Memory Reorganization Mechanisms during Acquired Behavioral Experience Retrieval in Chickens: Effects of Protein Synthesis Blockade in the Brain,” Zh. Vyssh. Nervn. Deyat. im. Pavlova 49, 554 (1999).Google Scholar
  22. 22.
    K. Nader, G. E. Schafe, and J. E. Le Doux, “Fear Memories Require Protein Synthesis in the Amygdala for Reconsolidation After Retrieval,” Nature 406, 722 (2000).CrossRefGoogle Scholar
  23. 23.
    S. J. Sara, “Retrieval and Reconsolidation: Toward a Neurobiology of Remembering,” Learning and Memory 7, 73 (2000).CrossRefGoogle Scholar
  24. 24.
    K. Nader and O. Hardt, “A Single Standard for Memory: The Case for Reconsolidation,” Nature Rev. Neurosci. 10, 224 (2009).CrossRefGoogle Scholar
  25. 25.
    N. C. Tronson and J. R. Taylor, “Molecular Mechanisms of Memory Reconsolidation,” Nature Rev. Neurosci. 8, 262 (2007).CrossRefGoogle Scholar
  26. 26.
    F. C. Bartlett, Remembering: A Study in Experimental and Social Psychology (Cambridge Univ. Press, Cambridge, 1932), p. 311.Google Scholar
  27. 27.
    O. Hardt, E. O. Einarsson, and K. Nader, “A Bridge Over Troubled Water: Reconsolidation as a Link between Cognitive and Neuroscientific Memory Research Traditions,” Annu. Rev. Psychol. 61, 141 (2010).CrossRefGoogle Scholar
  28. 28.
    A. M. Ivanitskii, “Natural Sciences and the Problem of Consciousness,” Vestn. Ross. Akad. Nauk 74, 716 (2004).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • K. V. Anokhin

There are no affiliations available

Personalised recommendations