A Theoretical Investigation on the pH Responses of Strong Polyelectrolyte Brushes

  • X. J. ZhaoEmail author
  • Z. F. Gao


The pH responsive properties of poly[2-(methacryloyloxy)ethyl trimethylammonium chloride] (PMETAC) brushes have been manifested in an experiment carried out by Liu et al. (2017). In this paper, we have employed a molecular theory to study the pH response of strong polyelectrolyte brushes (SPBs), by considering both strong polyelectrolyte-OH (P–O) hydrogen bonds and polyelectrolyte-counterions (P–C) bonds and their explicit coupling to the SPB conformation. It is found that, when at lower salt concentrations, the combination of P–O hydrogen bonds and P–C bonds results in the pH-responsive properties of a SPB, which are governed by the formation of interchain hydrogen bonds, while at higher salt concentrations, the pH response of the SPB is suppressed by the effect of salt ions. This finding agrees well with the experimental observation. We also investigate the OH-mediated bridging effect on the structure of a SPB. Based on this theoretical perspective, we predict that the pH response of a SPB will depend on the identity of salt, and the OH-mediated bridging interactions can induce a vertically phase segregation in a SPB.



We would like to thank Dr. Chun-Lai Ren for her valuable advices and suggestions. This work was supported by Chinese National Science Foundation through grants no. 21764015, and Xinjiang Natural Science Foundation no. 2016D01C380.


  1. 1.
    U. Raviv, S. Giasson, N. Kampf, G. J. Fohy, R. Jerome, and J, Klein, Nature 425, 163 (2003).CrossRefGoogle Scholar
  2. 2.
    J. Ruhe, M. Ballauff, M. Biesalski, P. Dziezok, F.Grohn, D. Johannsmann, N. Houbenov, N. Hugenberg, R. Konradi, S. Minko, M. Motornov, R. R. Netz, M. Schmidt, C. Seidel, M. Stamm, T. Stephan, D. Usov, and H. N. Zhang, Adv. Polym. Sci. 165, 79 (2004).CrossRefGoogle Scholar
  3. 3.
    X. Zhu, J. DeGraaf, F. M. Winnik, and D. Leckband. Langmuir 20, 10656 (2004).Google Scholar
  4. 4.
    A. Wittemann, B. Haupt, and M. Ballauff, Phys. Chem. Chem. Phys. 5, 1671 (2003).CrossRefGoogle Scholar
  5. 5.
    T. J. Su, D. A. Styrkas, R. K. Thomas, F. L. Baines, N. C. Billingham, and S. P. Armes, Macromolecules 29, 6892 (1996).CrossRefGoogle Scholar
  6. 6.
    H. Ahrens, H. Forster, and C. A. Helm, Phys. Rev. Lett. 81, 4172 (1998).CrossRefGoogle Scholar
  7. 7.
    H. Yim, M. S. Kent, D. Huber, S. Satija, J. Majewski, and G. S. Smith, Macromolecules 36, 5244 (2003).CrossRefGoogle Scholar
  8. 8.
    E. Mouri, K. Matsumoto, H. Matsuoka, and N. Torikai, Langmuir 21, 1840 (2005).CrossRefGoogle Scholar
  9. 9.
    P. A. Pincus, Macromolecules 24, 2912 (1991).CrossRefGoogle Scholar
  10. 10.
    R. Israels, F. A. Leermarkers, M. G. Fleer, and E. B. Zhulina, Macromolecules 27, 3249 (1994).CrossRefGoogle Scholar
  11. 11.
    W. D. Tian and Y. Q. Ma, Macromolecules 43, 1575(2010).CrossRefGoogle Scholar
  12. 12.
    C. H. Tong, J. Chem. Phys. 143, 054903 (2015).CrossRefGoogle Scholar
  13. 13.
    I. O. Lebedeva, E. B. Zhulina, and O. V. Borisov, J. Chem. Phys. 146, 214901 (2017).CrossRefGoogle Scholar
  14. 14.
    E. B. Zhulina, J. K. Wolterink, and O. V. Borisov, Macromolecules 33, 4945(2000).CrossRefGoogle Scholar
  15. 15.
    Y. Mei, K. Lauterbach, M. Hoffmann, O. V. Borisov, M. Ballauff, and A. Jusufi, Phys. Rev. Lett. 97, 158301 (2006).CrossRefGoogle Scholar
  16. 16.
    G. J. Dunderdale and J. P. A. Fairclough, Langmuir 29, 3628 (2013).CrossRefGoogle Scholar
  17. 17.
    J. L. Barrat and J. F. Joanny, Adv. Chem. Phys. 94, 1 (1996).Google Scholar
  18. 18.
    L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, Nature 442, 551(2006).CrossRefGoogle Scholar
  19. 19.
    I. Cobo, M. Li, B. S. Sumerlin, and S. Perrier, Nat. Mater. 14, 143 (2015).CrossRefGoogle Scholar
  20. 20.
    H. Zhang and J. Rulhe, Macromolecules 36, 6593 (2003).CrossRefGoogle Scholar
  21. 21.
    B. Wu, X. W. Wang, J. Yang, Z. Hua, K. Z. Tian, R. Kou, J. Zhang, S. Ye, Y. Luo, V. S. J. Craig, G. Z. Zhang and G. M. Liu, Sci. Adv. 2, e16005791 (2016).Google Scholar
  22. 22.
    J. Zhang, R. Kou and G. M. Liu, Langmuir 33, 6838 (2017).CrossRefGoogle Scholar
  23. 23.
    E. B. Zhulina, T. M. Birshtein, and V. Borisov, Macromolecules 28, 1491 (1996).CrossRefGoogle Scholar
  24. 24.
    V. Borisov, E. B. Zhulina, and T. M. Birshtein, Macromolecules 27, 4795 (1994).CrossRefGoogle Scholar
  25. 25.
    Y. A. Budkov, A. L. Kolesnikov, E. A. Nogovitsyn, and M. G. Kiselev, Polym. Sci., Ser. A 56, 697 (2014).CrossRefGoogle Scholar
  26. 26.
    Y. A. Budkov, A. L. Kolesnikov, N. Georgi, E. A. Nogovitsyn, and M. G. Kiselev, J. Chem. Phys. 142, 174901 (2015).CrossRefGoogle Scholar
  27. 27.
    Y. A Budkov and M. G. Kiselev, J. Phys.: Condens. Matter 30, 043001 (2018).Google Scholar
  28. 28.
    I. Szleifer and M. A. Carignano, Adv. Chem. Phys. 94, 165(1996).Google Scholar
  29. 29.
    C. L. Ren, R. J. Nap, and I. Szleifer, J. Phys. Chem. B 112, 16238 (2008).CrossRefGoogle Scholar
  30. 30.
    S. Morochnik, R. J. Nap, G. A. Ameer, and I. Szleifer, Soft Matter 13, 6322 (2017).CrossRefGoogle Scholar
  31. 31.
    C. L. Ren, W. D. Tian, I. Szleifer, and Y. Q. Ma, Macromolecules 44, 1719 (2011).CrossRefGoogle Scholar
  32. 32.
    B. K. Brettmann, N. Laugel, N. Hoffmann, P. Pincus, and M Tirrell, J. Polym. Sci., Part A: Polym. Chem. 54, 284 (2016).CrossRefGoogle Scholar
  33. 33.
    R. Kou, J. Zhang, T. Wang, and G. M. Liu, Langmuir 31, 10461 (2015).CrossRefGoogle Scholar
  34. 34.
    J. P. Mahalik, S. G. Bobby, and R. Kumar, Macromolecules 49, 7096 (2016).CrossRefGoogle Scholar
  35. 35.
    E. Y. Kramarenko, I. Y. Erukhimovich, A. R. Khokhlov, Macromol. Theory Simul. 11, 462 (2002).CrossRefGoogle Scholar
  36. 36.
    Y. D. Gordievskaya, Y. A. Budkov, and E. Y. Kramarenko, Soft Matter 14, 3232 (2018).CrossRefGoogle Scholar
  37. 37.
    Y. A. Budkov, N. N. Kalikin, and A. L. Kolesnikov, Eur. Phys. J. E: Soft Matter Biol. Phys. 40, 47 (2017).CrossRefGoogle Scholar
  38. 38.
    I. E. Dunlop, R. K. Thomas, S. Titmus, V. Osborne, S. Edmondson, W. T. S. Huck, and J. Klein, Langmuir 28, 3187 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Xinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter Physics, Yi Li Normal UniversityYiningChina
  2. 2.Laboratory of Micro-Nano Electro Biosensors and Bionic Devices, Yi Li Normal UniversityYiningChina
  3. 3.Xinjiang Astronomical Observatory, CAS, 150, Science 1-Street, UrumqiXinjiangChina

Personalised recommendations