Preparation and Performance Evaluation of Natural Rubber Composites with Aluminum Nitride and Aligned Carbon Nanotubes

  • Yuanzheng Tang
  • Lianxiang Ma
  • Yan HeEmail author
  • Hao Chen
  • Yingnan Jiang
  • Jin Xu


Diverse rubber composites filled with two types of thermal conductive fillers of carbon nanotubes (CNTs) and aluminum nitride (AlN) have been experimentally investigated. AlN in the composite serves as a bridge to join CNTs and to form a heat transfer network in the composites, while CNTs in the composite are either randomly or orientationally aligned. Both types of fillers have been found to improve the viscosity and thermal conductivity of the composite to some extent, while viscosity and thermal conductivity can both reach a maximum value when CNTs and AlN have the same content. Thermal conductivity of the composite with randomly aligned CNTs is superior to that with orientationally aligned CNTs. The highest thermal conductivity of 0.502 W/(m K) is obtained when the two kinds of fillers have a volume ratio of 1/1. AlN can reduce the tensile and tear strength of the composite while CNTs improve them. Tensile properties of the composite filled with oriented CNTs are better than that with random CNTs. The electrical conductivity of the composite can be improved with the increase in the loading of CNTs.



The experimental research and the instrumentations used are partially financed by Natural Science Foundation of China (no. 51576102).


  1. 1.
    S. Iijima, Nature 354(6348), 56 (1991).CrossRefGoogle Scholar
  2. 2.
    T. Evgin, H. D. Koca, N. Horny, A. Turgut, I. H. Tavman, M. Chirtoc, and I. Novak, Composites, Part A 82, 208 (2016).CrossRefGoogle Scholar
  3. 3.
    H. S. Kim, J. Jang, J. Yu, and S. Y. Kim, Composites, Part B 79, 505 (2015).CrossRefGoogle Scholar
  4. 4.
    S. Reich, C. Thomsen, and J. Maultzsch, in Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, New York, 2004), pp. 31–40.Google Scholar
  5. 5.
    D. Qian, G. J. Wagner, W. K. Liu, M. F. Yu, and R. S. Ruoff, Appl. Mech. Rev. 55, 495 (2002).CrossRefGoogle Scholar
  6. 6.
    P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Phys. Rev. Lett. 87, 215502 (2001).CrossRefGoogle Scholar
  7. 7.
    E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, Nano Lett. 6, 96 (2005).CrossRefGoogle Scholar
  8. 8.
    Z. Han and A. Fina, Prog. Polym. Sci. 36, 914 (2011).CrossRefGoogle Scholar
  9. 9.
    S. W. Choi, K. H. Yoon, and S. S. Jeong, Composites, Part A 45, 1 (2013).CrossRefGoogle Scholar
  10. 10.
    M. Chen and Z. Lu, Composites, Part B 79, 114 (2015).CrossRefGoogle Scholar
  11. 11.
    M. Rahmat and P. Hubert, Compos. Sci. Technol. 72, 72 (2011).CrossRefGoogle Scholar
  12. 12.
    H. M. Duong, D. V. Papavassiliou, K. J. Mullen, and S. Maruyama, Nanotechnology 19, 2222 (2008).CrossRefGoogle Scholar
  13. 13.
    P. C. Ma, N. A. Siddiqui, G. Marom, and J. K. Kim, Composites, Part A 41, 1345 (2010).CrossRefGoogle Scholar
  14. 14.
    T. Evgin, H. D. Koca, N. Horny, A. Turgut, I. H. Tavman, M. Chirtoc, M. Omastova, and I. Novak, Composites, Part A 82, 208 (2016).CrossRefGoogle Scholar
  15. 15.
    Q. Li, L. Chen, X. Li, J. Zhang, X. Zhang, K. Zheng, F. Fang, H. Zhou, and X. Tian, Composites, Part A 82, 214 (2016).CrossRefGoogle Scholar
  16. 16.
    Z. Gao and L. Zhao, Mater. Des. 66, 176 (2015).CrossRefGoogle Scholar
  17. 17.
    P. Kueseng, P. Sae-Oui, and N. Rattanasom, Polym. Test. 32, 731 (2013).CrossRefGoogle Scholar
  18. 18.
    L. Chen, Y. Y. Sun, J. Lin, X. Z. Du, G. S. Wei, S. J. He, and S. Nazarenko, Int. J. Heat Mass Transfer 81, 457 (2015).CrossRefGoogle Scholar
  19. 19.
    J. Xu and Y. He, Int. J. Polym. Sci. 2015, 305317 (2015).CrossRefGoogle Scholar
  20. 20.
    G. W. Lee, M. Park, J. Kim, J. I. Lee, and H. G. Yoon, Composites, Part A 37, 727 (2006).CrossRefGoogle Scholar
  21. 21.
    A. Agrawal and A. Satapathy, Int. J. Therm. Sci. 89, 203 (2015).CrossRefGoogle Scholar
  22. 22.
    W. Yuan, Q. Xiao, L. Li, and T. Xu, Appl. Therm. Eng. 106, 1067 (2016).CrossRefGoogle Scholar
  23. 23.
    G. A. Slack, R. A. Tanzilli, R. O. Pohl, J. W. Vandersande, J. Phys. Chem. Solids 48, 641 (1987).CrossRefGoogle Scholar
  24. 24.
    Y. Xu and D. D. L. Chung, Compos. Interfaces 7, 243 (2000).CrossRefGoogle Scholar
  25. 25.
    X. Huang, T. Iizuka, P. Jiang, Y. Ohki, and T. Tanaka, J. Phys. Chem. C 116(25), 13629 (2012).CrossRefGoogle Scholar
  26. 26.
    J. W. Bae, W. Kim, S. H. Cho, and S. H. Lee, J. Mater. Sci. 35, 5907 (2000).CrossRefGoogle Scholar
  27. 27.
    Y. Xu, D. D. L. Chung, and C. Mroz, Composites, Part A 32, 1749 (2001).CrossRefGoogle Scholar
  28. 28.
    A. J. Ma, W. X. Chen, and Y. G. Hou, J. Macromol. Sci., Part D 51, 1578 (2012).CrossRefGoogle Scholar
  29. 29.
    H. L. Liang, Y. L. Li, J. Tang, H. L. Liu, and Y. L. Huo, “Fabrication and Properties of AlN/CNT Composite Ceramics,” in High-Performance Ceramics VII, Ed. by W. Pan and J. Gong (Tran Tech Publ. Ltd., Stafa; Zurich, 2012).Google Scholar
  30. 30.
    Y. He, Z. F. Cao, and L. X. Ma, Int. J. Polym. Sci. 2015, 964723 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Yuanzheng Tang
    • 1
  • Lianxiang Ma
    • 1
  • Yan He
    • 1
    Email author
  • Hao Chen
    • 1
  • Yingnan Jiang
    • 1
  • Jin Xu
    • 1
  1. 1.Qingdao University of Science and TechnologyQingdaoChina

Personalised recommendations