Advertisement

The Effect of Oxidation Time and Concentration on Physicochemical, Structural, and Thermal Properties of Bacterial Nano-Cellulose

  • F. MohammadkazemiEmail author
  • R. Khademibarangenani
  • M. Koosha
NATURAL POLYMERS
  • 5 Downloads

Abstract

In this study, the effects of oxidation time and concentration of hydrogen peroxide (H2O2) and potassium periodate (KIO4) on the physicochemical (including FTIR, EDX, CHNO, water absorption-WA, water retention-WR, contact angle, and degree of polymerization), morphological (SEM), mechanical properties (tensile strength and elongation at break), and thermal stability (TGA) of bacterial cellulose (BC) were investigated. Oxidation was confirmed by observing the formation of hemiacetal bonds and carboxyl bonds in FTIR. CH2 scissoring of the cellulose chain was strongly observed in OBC-H2O2-15h-20. Among different oxidized BCs, OBC-KIO4-24h-0.01 had the higher mechanical properties and degree of polymerization compared with OBC-H2O2 samples. SEM observations showed that oxidation reduced tangling of the nanofibers created open structures, and increased water absorption and water retention values. The lowest contact angle was also obtained for OBC-KIO4-24h-0.01. The onset degradation temperature of OBC-KIO4-24h-0.01 samples was lower than the OBC-H2O2-30h-10 and neat BC samples. Periodate ions attack the cellulose molecules in a specific way producing aldehyde groups, without breaking the polymer chain. According to the characterized properties, OBC-KIO4-24h-0.01 can be introduced as an optimum mild and selective oxidation treatment for functionalizing with other matters to produce high-value-added materials/composites.

Notes

ACKNOWLEDGMENTS

This work was supported by Shahid Beheshti University.

REFERENCES

  1. 1.
    N. Lin, C. Bruzzese, and A. Dufresne, ACS Appl. Mater. Interfaces 4, 4948 (2012).CrossRefGoogle Scholar
  2. 2.
    F. Mohammadkazemi, M. Faria, and N. Cordeiro, Mater. Sci. Eng., C 65, 393 (2016).CrossRefGoogle Scholar
  3. 3.
    T. Suratago, S. Taokaew, N. Kanjanamosit, K. Kanjanaprapakul, V. Burapatana, and M. Phisalaphong, J. Ind. Eng. Chem. 32, 305 (2015).CrossRefGoogle Scholar
  4. 4.
    N. Chiaoprakobkij, N. Sanchavanakit, K. Subbalekha, P. Pavasant, and P. Phisalaphong, Carbohydr. Polym. 85, 548 (2011).CrossRefGoogle Scholar
  5. 5.
    I. Sulaeva, U. Henniges, T. Rosenau, and A. Potthast, Biotechnol. Adv. 33, 1547 (2015).CrossRefGoogle Scholar
  6. 6.
    S. Zang, R. Zhang, H. Chen, Y. Lu, J. Zhou, X. Chang, G. Qiu, Z. Wu, and G. Yang, Mater. Sci. Eng., C 46, 111 (2015).CrossRefGoogle Scholar
  7. 7.
    J. Li, Y. Wan, L. Li, H. Liang, and J. Wang, Mater. Sci. Eng., C 29, 1635 (2009).CrossRefGoogle Scholar
  8. 8.
    C. Tsioptsias, I. Tsivintzelis, L. Papadopoulou, and C. Panayiotou, Mater. Sci. Eng., C 29, 159 (2008).CrossRefGoogle Scholar
  9. 9.
    C. R. Rambo, D. O. S Recouvreux, C. A. Carminatti, A. K. Pitlovanciv, R. Antönio, and L. M. Porto, Mater. Sci. Eng., C 28, 549 (2008).CrossRefGoogle Scholar
  10. 10.
    L. Fras, K. Stana-Kleinschek, V. Ribitsch, M. Sfiligoj-Smole, and T. Kreze, Mater. Res. Innovations 8, 145 (2004).CrossRefGoogle Scholar
  11. 11.
    L C. Lai, S. Sheng, T. X. Liao, and Z. Zhanga, Surf. Interface Anal. 45, 1673 (2013).CrossRefGoogle Scholar
  12. 12.
    Methods of Wood Chemistry, Ed. By B. L. Browning (Wiley, New York, 1968).Google Scholar
  13. 13.
    M. Park and D. H. Lee, Carbohydr. Polym. 116, 223 (2015).CrossRefGoogle Scholar
  14. 14.
    T. T. Nge, J. Sugiyama, and V. Bulone, “Bacterial Cellulose-Based Biomimetic Composites,” in Biopolymers, Ed. by M. Elnashar (InTech, Croatia, 2010), p. 345.Google Scholar
  15. 15.
    W. S. Chang and H. H. Chen, Food Hydrocolloids 53, 75 (2016).CrossRefGoogle Scholar
  16. 16.
    M. C. Bowman and I. D. Cooke, Br. J. Obstet. Gynaecol. 101, 3 (1994).CrossRefGoogle Scholar
  17. 17.
    S. T. Nikolici, M. Kostic, Z. Praskalo and J. Petronijevic, Chem. Ind. Chem. Eng. Q. 17, 367 (2011).CrossRefGoogle Scholar
  18. 18.
    N. T. Lacin, Int. J. Biol. Macromolecules 67, 22 (2014).CrossRefGoogle Scholar
  19. 19.
    J. Y. Kim and H. M. Choi, Cellul. Chem. Technol. 48, 25 (2014).Google Scholar
  20. 20.
    A. Serra, I. González, H. Oliver-Ortega, Q. Tarrès, and M. Delgado-Aguilar, and P. Mutjé, Polymers 9, 557 (2017).CrossRefGoogle Scholar
  21. 21.
    K. Schenzel and S. Fischer, Cellulose 8, 1 (2001).CrossRefGoogle Scholar
  22. 22.
    J. S. Lupoi, E. Gjersing, and M. F. Davis, Front. Bioeng. Biotechnol. 3, 50 (2015).CrossRefGoogle Scholar
  23. 23.
    N. Gierlinger, M. Schwanninger, A. Reinecke, and I. Burgert, Biomacromolecules 7, 7 (2006).CrossRefGoogle Scholar
  24. 24.
    S. Wang, T. Huang, C. Lai, T. Xi, S. Liao, and N. Fang, Cellul. Chem. Technol. 50, 853 (2016).Google Scholar
  25. 25.
    Y. Jia, X. Zhai, W. Fu, Y. Liu, F. Li, and C. Zhong, Carbohydr. Polym. 151, 907 (2016).CrossRefGoogle Scholar
  26. 26.
    J. Wu, Y. Zheng, Z. Yang, Q. Lin, K. Qiao, X. Chen, and Y. Peng, RSC Adv. 4, 3998 (2014).Google Scholar
  27. 27.
    M. Henriksson, L. A. Berglund, P. Isaksson, T. Lindström, and T. Nishino, Biomacromolecules 9, 1579 (2008).CrossRefGoogle Scholar
  28. 28.
    M. Strlic, J. Kolarb, M. Zigonc, and B. J. Pihlar, J. Chromatogr. A 805, 93 (1998).CrossRefGoogle Scholar
  29. 29.
    H. S. Barud, A. M. de Araujo Junior, D. B. Santos, R. M. N. de Assuncao, C. S. Meireles, D. A. Cerqueira, G. R. Filho, C. A. Ribeiro, Y. Messaddeq, and J. L. Ribeiro Sidney, Thermochim. Acta. 471, 61 (2008).CrossRefGoogle Scholar
  30. 30.
    H. S Barud, C. A. Ribeiro, M. S. Crespi, M. A. J. Martines, R. F. C. Dexpert-Ghys, Y. Marques, Y. Messaddeq, and J. L. Sidney Ribeiro, Therm. Anal. Calorim. 87, 815 (2007).CrossRefGoogle Scholar
  31. 31.
    Q. Cui, Y. Zheng, Q. Lin, W. Song, Kun. Qiaoa, and S. Liu, RSC Adv. 4, 1630 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • F. Mohammadkazemi
    • 1
    Email author
  • R. Khademibarangenani
    • 1
  • M. Koosha
    • 1
  1. 1.Department of Biosystems, Faculty of New Technologies Engineering, Shahid Beheshti University, Science and Research CampusZirabIran

Personalised recommendations