Fabrication of Electrically Conductive Cellulose Acetate/Polyaniline/WO3 Nanocomposite Nanofibers with Potential Applications in Electrochemical Devices

  • Sanaz Eslah
  • Mahdi NouriEmail author


In this work, due to the importance of biopolymers utilization in electrochemical applications, a new type of electroconductive/electroactive cellulose acetate (CA) base nanofibers is prepared via electrospinning of acid-doped polyaniline (PANI), WO3 nanopowders and CA. The fabricated nanocomposite mats were evaluated and characterized using various techniques such as scanning electron microscopy (SEM), cyclic voltammetry (CV), differential scanning calorimetry (DSC), electrochemical impedance spectroscopy (EIS), Fourier infrared spectroscopy (FTIR) and X-ray diffraction (XRD). SEM images indicated that the nanofibers morphology was ribbon-like, smooth and bead free that may be due to solvent system selection and ambient conditions. Also, the average diameter of CA nanofibers has been decreased from 320 to 230 nm by adding 5 wt % of PANI to CA solution. FTIR results confirmed the existence of hydrogen interaction between the polyaniline and CA molecular chains. The results obtained from XRD and DSC showed that crystalline region of CA/PANI mats has increased by addition of WO3 nanoparticles. Electrochemical analysis showed good electrocatalytic properties for the electrospun CA/PANI/WO3 nanocomposite nanofibers. The results indicated that charge transfer and ohmic serial resistance of the nanocomposites were decreased due to addition of PANI and WO3 nanoparticles.


  1. 1.
    O. Suwantong and P. Supaphol, “Applications of Cellulose Acetate Nanofiber Mats,” in Handbook of Polymer Nanocomposites: Processing, Performance and Application, Ed. by K. K. Kar, J. K. Pandey, and S. K. Rana (Springer Verlag, Berlin; Heidelberg, 2015), pp. 355–368.Google Scholar
  2. 2.
    Z. Zhou, X. Peng, L. Zhong, L. Wu, X. Cao, and R. C. Sun, Carbohydr. Polym. 136, 322 (2016).CrossRefGoogle Scholar
  3. 3.
    H. Liu and Y. L. Hsieh, J. Polym. Sci., Part B: Polym. Phys. 40, 2119 (2002).CrossRefGoogle Scholar
  4. 4.
    R. Konwarh, N. Karak, and M. Misra, Biotechnol. Adv. 31, 421 (2013).CrossRefGoogle Scholar
  5. 5.
    S. Ummartyotin and H. Manuspiya, Renewable Sustainable Energy Rev. 50, 204 (2015).CrossRefGoogle Scholar
  6. 6.
    D. A. Cerqueira, A. J. Valente, R. Guimes Filho, and H. D. Burrows, Carbohydr. Polym. 78, 402 (2009).CrossRefGoogle Scholar
  7. 7.
    M. Mojtabavi, G. Jodhani, R. Rao, J. Zhang, and P. Gouma, Adv. Device Mater. 2, 1 (2016).CrossRefGoogle Scholar
  8. 8.
    R. Pereira, D. Cerqueira, A. Valente, A. Polishchuk, H. Burrows, and V. Lobo, J. Appl. Polym. Sci. 111, 1947 (2009).CrossRefGoogle Scholar
  9. 9.
    W. Hu, S. Chen, Z. Yang, L. Liu, and H. Wang, J. Phys. Chem. B 115, 8453 (2011).CrossRefGoogle Scholar
  10. 10.
    A. Valente, H. Burrows, A. Y. Polishchuk, C. Domingues, O. Borges, M. Eusébio, T. Maria, V. Lobo, and A. Monkman, Polymer 46, 5918 (2005).CrossRefGoogle Scholar
  11. 11.
    M.-A. De Paoli, E. R. Duek, and M. A. Rodrigues, Synth. Met. 41, 973 (1991).CrossRefGoogle Scholar
  12. 12.
    F. Rodriguez, M. Castillo-Ortega, J. Encinas, H. Grijalva, F. Brown, V. Sánchez-Corrales, and V. Castano, J. Appl. Polym. Sci. 111, 1216 (2009).CrossRefGoogle Scholar
  13. 13.
    R. Li, L. Liu, and F. Yang, J. Hazard. Mater. 280, 20 (2014).CrossRefGoogle Scholar
  14. 14.
    A. A. Qaiser, M. M. Hyland, and D. A. Patterson, J. Phys. Chem. B 115, 1652 (2011).CrossRefGoogle Scholar
  15. 15.
    C. Tsioptsias, K. G. Sakellariou, I. Tsivintzelis, L. Papadopoulou, and C. Panayiotou, Carbohydr. Polym. 81, 925 (2010).CrossRefGoogle Scholar
  16. 16.
    M. T. S. Chani, K. S. Karimov, S. B. Khan, and A. M. Asiri, Sens., Actuators A 246, 58 (2016).CrossRefGoogle Scholar
  17. 17.
    P. Lu and Y.-L. Hsieh, ACS Appl. Mater. Interfaces 2, 2413 (2010).CrossRefGoogle Scholar
  18. 18.
    H. Zheng, Y. Tachibana, and K. Kalantar-zadeh, Langmuir 26, 19148 (2010).CrossRefGoogle Scholar
  19. 19.
    S.-M. Yong, T. Nikolay, B. T. Ahn, and D. K. Kim, J. Alloys Compd. 547, 113 (2013).CrossRefGoogle Scholar
  20. 20.
    J. Solis, S. Saukko, L. Kish, C. Granqvist, and V. Lantto, Thin Solid Films 391, 255 (2001).CrossRefGoogle Scholar
  21. 21.
    S. Pokhrel, C. E. Simion, V. S. Teodorescu, N. Barsan, and U. Weimar, Adv. Funct. Mater. 19, 1767 (2009).CrossRefGoogle Scholar
  22. 22.
    J. Wang, E. Khoo, P. S. Lee, and J. Ma, J. Phys. Chem. C 113, 9655 (2009).CrossRefGoogle Scholar
  23. 23.
    N. Prabhu, S. Agilan, N. Muthukumarasamy, and T. Senthil, Int. J. ChemTech Res. 6, 3491 (2014).Google Scholar
  24. 24.
    H. Wei, X. Yan, S. Wu, Z. Luo, S. Wei, and Z. Guo, J. Phys. Chem. C 116, 25052 (2012).CrossRefGoogle Scholar
  25. 25.
    C. Janaky, N. R. de Tacconi, W. Chanmanee, and K. Rajeshwar, J. Phys. Chem. C 116, 19145 (2012).CrossRefGoogle Scholar
  26. 26.
    A. MacDiarmid, J. Chiang, A. Richter, and A. J. Epstein, Synth. Met. 18, 285 (1987).CrossRefGoogle Scholar
  27. 27.
    M. Cheng, Z. Qin, S. Hu, H. Yu, and M. Zhu, Cellulose 24, 219 (2017).CrossRefGoogle Scholar
  28. 28.
    K. Rodríguez, P. Gatenholm, and S. Renneckar, Cellulose 19, 1583 (2012).CrossRefGoogle Scholar
  29. 29.
    C. Santato, M. Odziemkowski, M. Ulmann, and J. Augustynski, J. Am. Chem. Soc. 123, 10639 (2001).CrossRefGoogle Scholar
  30. 30.
    C. H. Hong, S. J. Ki, J. H. Jeon, H. L. Che, I. K. Park, C. D. Kee, and I. K. Oh, Compos. Sci. Technol. 87, 135 (2013).CrossRefGoogle Scholar
  31. 31.
    M. E. Vallejos, M. S. Peresin, and O. J. Rojas, J. Polym. Environ. 20, 1075 (2012).CrossRefGoogle Scholar
  32. 32.
    Y. Kong and J. Hay, Eur. Polym. J. 39, 1721 (2003).CrossRefGoogle Scholar
  33. 33.
    A. Puleo, D. R. Paul, and S. Kelley, J. Membr. Sci. 47, 301 (1989).CrossRefGoogle Scholar
  34. 34.
    S. Wu, X. Qin, and M. Li, J. Ind. Text. 44, 85 (2014).CrossRefGoogle Scholar
  35. 35.
    H. Cortina, C. Martínez-Alonso, M. Castillo-Ortega, and H. Hu, Mater. Sci. Eng., C 177, 1491 (2012).CrossRefGoogle Scholar
  36. 36.
    A. Mostafaei and A. Zolriasatein, Prog. Nat. Sci.: Mater. Int. 22, 273 (2012).CrossRefGoogle Scholar
  37. 37.
    W.-H. Hu, G.-Q. Han, B. Dong, and C.-G. Liu, J. Nanomater. 16, 23 (2015).Google Scholar
  38. 38.
    J. R. Araujo, E. S. Lopes, R. de Castro, C. A. Senna, E. de Robertis, R. S. Neves, B. Fragneaud, A. Nykänen, A. Kuznetsov, and B. S. Archanjo, “Characterization of Polyaniline-Based Blends, Composites, and Nanocomposites,” in Polyaniline Blends, Composites, and Nanocomposites, Ed. by P. M. Visakh, C. Della Pina, and E. Falletta (Elsevier, Amsterdam, 2018), pp. 209–233.CrossRefGoogle Scholar
  39. 39.
    P. T. Kissinger and W. R. Heineman, J. Chem. Educ. 60, 702 (1983).CrossRefGoogle Scholar
  40. 40.
    I. Streeter, G. G. Wildgoose, L. Shao, and R. G. Compton, Sens., Actuators B 133, 462 (2008).CrossRefGoogle Scholar
  41. 41.
    S. Rani, P. Suri, and R. M. Mehra, Prog. Photovoltaics: Res. Appl. 19, 180 (2011).CrossRefGoogle Scholar
  42. 42.
    Y. Xiao, J.-Y. Lin, J. Wu, S.-Y. Tai, G. Yue, and T.‑W. Lin, J. Power Sources 233, 320 (2013).CrossRefGoogle Scholar
  43. 43.
    M. Trchová, I. Šeděnková, E. Tobolková, and J. Stejskal, Polym. Degrad. Stab. 86, 179 (2004).CrossRefGoogle Scholar
  44. 44.
    V. Kulichikhin, I. Skvortsov, A. Subbotin, S. Kotomin, and A. Malkin, Polymers 10, 856 (2018).CrossRefGoogle Scholar
  45. 45.
    P. H. Picciani, E. S. Medeiros, Z. Pan, D. F. Wood, W. J. Orts, L. H. Mattoso, and B. G. Soares, Macromol. Mater. Eng. 295, 618 (2010).CrossRefGoogle Scholar
  46. 46.
    I. D. Norris, M. M. Shaker, F. K. Ko, and A. G. MacDiarmid, Synth. Met. 114, 109 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Textile Engineering, Faculty of Engineering, University of GuilanRashtIran

Personalised recommendations